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Abstract

An experimental test facility has been designed, constructed, and commissioned for studying the
convective heat transfer of an array of 55 impingement jets. Spatial variation in time averaged
Nusselt number as well as spanwise time averaged Nusselt number are presented for jet Reynolds
numbers of 4,000, 8,000, 12,000, and 15,000 for jet to target standoff distances of z/D=3, 4, and
5. For each of these configurations the exit flow configuration has also been varied to include both
a single exit and double exit configuration. For each jet standoff distance and exit configuration,
time and overall area averaged Nusselt number is presented as a function of jet Reynolds number.
Animations of measured unsteady Nusselt number are presented for selected cases.

Numerical simulations have been conducted using the Fluent Computational Fluid Dynamics
software package. The three dimensional, compressible, Navier Stokes equations are solved. Results
for Nusselt number are presented for a grid dependency study of a steady, single impingement jet
impacting a target surface at a standoff distance of z/D=3, at jet Reynolds numbers of 4,000 and
15,000. In the single jet grid dependency study flow is exhausted in all directions after impacting
the target surface. Grids ranging from 1.2 million to 13.2 million grid points are evaluated.

Unsteady simulations were conducted of a single impingement jet at a jet Reynolds number
of 4000, a jet to target standoff distance of z/D=3, flow exiting in two directions, and a pair of
repeating boundaries in the other two directions. Two cases were studied. The first with a spacing
between the two repeating boundaries of y/D=6 and the second with a spacing of y/D=3. For
both cases, contour plots of time averaged, as well as animations of unsteady in plane velocity
magnitude, normal component of vorticity, and Nusselt number are presented.

Unsteady simulations were also conducted of eleven impingement jets at a jet Reynolds number

of 4,000, a jet to target standoff distance of z/D=3, and a double exit configuration. Two cases
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were studied. The first with a spacing between the two repeating boundaries of y/D=4.03 and
the second with a spacing of y/D=3. For both cases, contour plots of time averaged in plane
velocity magnitude, normal component of vorticity, pressure, temperature, and Nusselt number are
presented. Animations of contours of in plane velocity magnitude, normal component of vorticity,
and Nusselt number are also presented.

Spanwise time average Nusselt number for both eleven jet numerical cases is compared to that
of the central row of an experimental case with a double exit configuration. Comparisons are also
made between spanwise average Nusselt number for the central jet of an experimental case, a single
jet numerical, the single jet numerical cases with the repeating boundaries, as well as the central

jet of the eleven jet numerical cases.
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Chapter 1

Introduction

1.1 Motivation

Gas turbine engine designs are increasingly pushing the structural and thermal limitations of today’s
materials. In a gas turbine engine, as in any heat engine, higher temperature and higher pressure
cycles lead to higher efficiency and higher power density. Gas turbine engines typically use high
thermal conductivity metals due to their cost, durability, strength and toughness. There is an
increasing push for the use of Ceramic Matrix Composite (CMC) materials in gas turbine hot
sections; however, CMCs also have temperature limitations. Regardless of the maximum service
temperature of the material, heat transfer must be carefully controlled in order to keep parts from
overheating.

Internal cooling of gas turbine hot section components, such as turbine blades, is commonly
performed through the combination of impingement cooling and serpentine channels. This research
is focused on impingement cooling. Impingement cooling has the advantage of a thin boundary
layer due to the stagnation point flow when the jet core impacts the target surface. Additionally,
mixing of the cool supply air and the hotter, spent air is reduced due to the separation of these
two fluids by an impingement nozzle plate. Unfortunately, when large arrays of impingement jets
are implemented inside a gas turbine blade, cross flow effects from spent jet air reduce the cooling
effectiveness of downstream jets. The jet is bent, the strength of the jet is reduced, and the spent
air engages in additional mixing prior to impacting the surface to be cooled.

The earliest techniques utilized arrays of thermocouples to study the spatially dependent heat



transfer coefficients on an impingement target surface [1, 2]. Later developments primarily utilized
a transient liquid crystal thermography technique [3, 4, 5, 6]. The transient liquid crystal technique
does not allow for time averaging of the convective heat transfer coefficient, but rather, assumes
that the convective heat transfer coefficient is independent of time. Additionally, the transient
liquid crystal technique requires complex liquid crystal color vs temperature calibration procedures,
sensitive test procedures and custom data reduction software. These transient techniques typically
utilize recirculation loops in order to heat the supply air to an appropriate temperature. Large
transient liquid crystal facilities are oftentimes utilized in order to study convective heat transfer
at high Reynolds numbers [7].

In order to overcome these complexities and limitations, a new type of test rig has been de-
veloped with Dr. Shichuan Ou of the Air Force Research Laboratory (AFRL) for studying the
convective heat transfer coefficient of impingement jets in the presence of cross flow. This new,
compact test rig utilizes a steady state Infrared Thermography technique which allows for the de-
termination of unsteady, as well as time averaged convective heat transfer coefficient with respect
to position on the impingement surface. Additionally, a computational study of similar geometry
was initiated in an effort to gain more detailed, three dimensional insight into the flow physics

involved with impingement cooling jets.

1.2 Overview of Impingement Jets and Impingement Jet Arrays

Impingement jets can be used as a heat transfer enhancement technique to either heat or cool
the target surface. A schematic of a sectional view of a single impingement jet is presented in
Figure 1.1. Although not to scale, Figure 1.1 illustrates several key features of impingement jet
flow and impingement jet nozzles. Impingement jets are typically either slot jets or cylindrical jets,
which in the sectional view presented in Figure 1.1 appear the same. Cylindrical impingement jet
nozzles are typically mandated in gas turbine blade applications due to structural and manufac-
turing requirements of the gas turbine blade. The present work focuses exclusively on cylindrical
impingement jet nozzles. Fluid in a higher pressure reservoir, typically referred to as the pressure
chamber, is accelerated through the impingement nozzle, and then impacts the target surface at

a high velocity. A free shear layer exists between the high velocity fluid, known as the jet core,



and the remaining air in the impingement region. Due to the free shear layer, a recirculation is
induced in the surrounding fluid. After impacting the target surface, the impingement jet fluid
then travels to an exit. Depending on the application, the fluid can exit in all directions or just
one specific direction. As was just mentioned, impingement jets can be used to heat or cool the
target surface. Due to the exclusive use of impingement jets for cooling applications in gas turbine
blades, the present work focuses primarily on the use of impingement jets for cooling applications.
Additionally, impingement jets can be multiphase, however, due to the use of only air in gas turbine

blade cooling, only single phase impingement jet heat transfer is studied in the present work.

images/Schematics/single_jet_cartoon-eps-converted-to.pdf

Figure 1.1: Sectional of a Singe Impingement Jet

Figure 1.2 illustrates a sectional view of the use of multiple impingement jets as an impingement
jet array. Due the the sharp drop in convective heat transfer as the boundary layer thickens as
the fluid travels away from the jet core, multiple impingement jets are typically needed in order
to heat or cool a large surface area. In Figure 1.2, the exhaust fluid is given the opportunity to

exit in two directions. The total mass flow rate through the cross section increases as the exhaust



fluid travels towards the exits because the exhausted fluid (cross flow) must travel around the core
of each downstream impingement jet. As the exhaust fluid travels around these downstream jets,
the performance of the downstream jets is reduced due to this cross flow interaction. Additional
reduction in convective heat transfer is due to jet to jet interactions. Jet to jet interactions can
be described as the interaction between two neighboring jets. As can be seen in Figure 1.1, the
high velocity fluid turns after impacting the target surface and becomes a “wall jet” parallel to the
target surface. With two nearby jets, the resulting two “wall jets”, which are parallel to the target
surface, interact with each other, and cause a second stagnation region. In this second stagnation

region, the boundary layer thickens, and the heat transfer coefficient is reduced.

images/Schematics/SmallSchematic-eps-converted-td.pdf

Figure 1.2: Sectional View of an Array of Impingement Jets

The purpose of the present study is to better characterize the effects of the cross flow and
jet to jet interactions on jet performance in impingement jet arrays. Although the application of
impingement cooling to gas turbine blades is of primary interest, the geometry studied was much
simpler than typically found in a gas turbine blade. The impingement jet nozzles were arranged in
a rectangular patter. The target surface was flat. The impingement jet nozzle plate was primarily
rectangular in cross section. In an application found in an actual turbine blade, curved nozzle
plates and target surfaces would be required, and unequal placement of impingement jet nozzles
may be necessary due to the cooling needs of the turbine blade. In addition, no rotational affects
were studied, which would be present in an actual, rotating turbine blade. Chapter 2 discusses the

design of an experimental facility and the convective heat transfer characteristics measured for an



impingement jet array. Chapter 3 discusses numerical simulations of heat transfer characteristics
of single impingement jets as well as heat transfer characteristics of arrays of multiple impingement

jets.



Chapter 2

Experimental Study of Impingement

Jet Array Heat Transfer

2.1 Test Rig Design

The design of the experimental test facility was initiated without any prior experience with impinge-
ment jet heat transfer. The test rig was developed along with Dr. Shichuan Ou of the Air Force
Research Laboratory (AFRL), and was installed in Research Cell 21 in Building 18C at Wright
Patterson Air Force Base. Key driving factors in the test rig design were the desire to utilize an
infrared thermography technique, utilize a standard shop air system for the impingement jet air
supply, and minimize size and cost. With these constraints in mind, it was difficult to develop a
facility where the infrared camera could obtain a direct line of sight to the impingement jet target
surface due to the narrow channel between the impingement jet nozzle plate and the impingement
jet target surface. As a result, a facility was developed which utilized an electrically heated foil
which was cooled by impinging jets. Due to the thin nature of the foil, an infrared camera was
able to image the side of the foil opposite of impingement. Figure 2.1 shows an overall view of the
test rig with key components annotated. Additionally, a schematic of the layout of the test rig is
also shown in Figure 2.2. The remainder of Section 2.1 discusses the design and selection of the

components shown in Figures 2.1 and 2.2 in further detail.
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2.1.1 Flow Configuration

Figure 2.3 depicts a cross sectional schematic of the inlet diffusers and the test section. The test rig
is supplied with room temperature air via a shop air supply system. The air supply enters the test
section at the transition duct. The transition duct contains a series of diffusers through which the
air passes, and then enters the pressure chamber. The transition duct is manufactured primarily
of aluminum. All threaded connections were sealed with pipe dope and Teflon tape. Other mating
surfaces were sealed with a gasket material. In the pressure chamber, the air is assumed to be at

a nearly uniform velocity and static pressure throughout the pressure chamber.

images/Schematics/Test_Rig_Cross_Section-eps-converted-to.pdf

Figure 2.3: Rendering of a Cross Sectional View of the Test Section

The walls of the remainder of the test section were manufactured from an optically transparent
polycarbonate. This material was selected due to ease of machining, the ability to continually
inspect the flow path in the test rig, and low thermal conductivity. The test section is mounted
onto two aluminum frames. Material thickness and bolt pitch were selected to match existing
hardware in the test cell. All mating surfaces within the pressure chamber were sealed with clear
RTYV in order to ensure that no air would leak, which would disrupt the mass flow rate measurement.
The impingement jet nozzle plate was designed with 5 rows of 11 nozzles, laid out in a rectangular

pattern. Figures 2.4 and 2.5 show dimensional top and side views at sectional planes placed at the



center of the test section. Each impingement jet nozzle consisted of a simple cylindrical hole drilled
into the nozzle plate. The hole size diameter (D) is 4.7625mm. The non-dimensional spacing of the
holes in the nozzle plate is such that centers of the holes are placed at a regular spacing of x/D =
3 and y/D = 3. Hole spacing was selected by Dr. Shichuan Ou, and was motivated by the lack of
results available in the public domain for such a configuration. Although the distance between the
hole centers in the array was the same, the distance between the centerline of the outermost rows
and the sidewalls was not. In order to maintain periodicity with the sidewalls, the distance between
the sidewalls and the centerline of the outer rows should be 1/2 the distance between the centerlines
of all other holes in the interior of the array. Due to mounting constraints of the heated foil, the
distance between the sidewalls and the centerline of the outermost rows had to be increased 172%
to y/D=4.08, rather than the ideal periodic spacing of y/D=1.5. The non-dimensional standoff
distance of the foil was based upon the thickness of the sidewalls. Results presented in Section 2.4
were generated using sidewall spacers with a non-dimensional thickness (z/D) of 3, 4, and 5. The
nozzle plate and the inlet supply are setup in a “co-flow” arrangement. After passing through the
nozzle plate and impacting the impingement surface, the spent jet air can exit in two directions.
The exits are maintained at atmospheric pressure. One of the two exists can be blocked with a

spacer, forcing all air to exhaust in one direction, increasing the cross flow.

images/Schematics/TestRigTopViewSectional-eps-converted-to.pdf

Figure 2.4: Top, Sectional View of the Test Section Flow Path
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Figure 2.5: Side, Sectional View of the Test Section Flow Path
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Figure 2.6: Side View of the Test Section

2.1.2 Heated Foil Impingement Surface

The heated foil consisted of a 38.1um thin stainless steel foil. Due to Joule heating, the foil was
heated volumetrically by passing a DC electrical current was passed through it. Stainless steel was
chosen from a variety of materials because it is the cheapest and most commonly available conductor
with a high volumetric resistivity. Nichrome is also a conductor with a very high electrical resistance,
and is commonly utilized in the construction of electrical heaters. Nichrome foil, however, was of
limited availability, and the high cost prohibited its use in the test rig.

Throughout the test rig design process, the heated foil was assumed to be of uniform thickness,
rectangular cross section and rectangular surface area. For a conductor with a uniform, perfectly
rectangular cross section, and a perfectly rectangular surface area, the resistance is defined as

wxb

12



where p is the volumetric resistivity, [ is the length of the conductor, w is the width of the conductor,
and b is the thickness of the conductor. In a conductor with resistance R, the electrical power

converted to heat due to Joule heating is represented by
P=I’xR (2.2)

Substituting R from Equation (2.1) into Equation (2.2) yields

I?xpxl

pP= (2.3)

w*b

Although Joule heating is a volumetric phenomenon, the heating is assumed to be a surface phe-
nomenon in the foil heater due to the thin cross section of the foil. Lateral conduction in the foil is
also assumed to be negligible because of the thin cross section. If the cross section of the foil and
the volumetric resistivity are also assumed to be uniform, the heat flux on the foil can be assumed

to be uniform and represented by

P
Tfoir = 1 (2.4)

S

where Aj; is the surface area of the foil and is represented by
As=1lxw (2.5)

Substituting Equations (2.3) and (2.5) into Equation (2.4), and simplifying yields

1" I*xp

Ayoil = (2~6)

b * w2

which results in a uniform, constant surface heat flux boundary condition. As can be seen in Equa-
tion (2.6), the heat flux in the foil heater is proportional to the square of the current flowing through
the foil, inversely proportional to the square of the width of the heater, inversely proportional to
the thickness of the foil, and linearly proportional to the volumetric resistivity of the foil. The heat
flux is independent of the length of the foil, provided the power supply circuit can supply a voltage
sufficient to overcome the additional resistance, while still maintaining the same electrical current.

With stainless steel selected as the material, foil thickness and width were key parameters which

13



could be modified during the design process in order to vary the maximum heat flux obtainable in
the test rig, with the maximum electrical current being limited by the available DC power supply.

Great difficulty was experienced in the development of an assembly procedure for a strong,
minimally intrusive, attachment scheme between the thin heated foil and the copper heater circuit
busbar in the test rig. This challenge caused a delay of over 6 months in the commissioning of
the test rig. Key challenges were due to the high current levels, high temperature gradients within
the foil, high temperature gradients between the foil and the rest of the test rig, large difference in
thermal expansion coefficient between the foil and the rest of the test rig, and stagnation pressure
due to the impingement jets impacting the foil surface, all of which caused a severe wrinkling of
the thin stainless steel foil heater. The use of Invar, a material with an extremely low coefficient
of thermal expansion was evaluated as an alternative to stainless steel. Although the material’s
extremely low thermal expansion coefficient would have prevented wrinkling or warping due to
temperature gradients induced by impingement jet heat transfer, the material proved to be unusable
because its thermal expansion characteristics are too different than any other common materials.
As a result, any attachment scheme between Invar foil and the copper busbars resulted in the
busbars causing the Invar foil to wrinkle due to the significantly higher expansion or contraction of
the copper busbars with changes in temperature. Etched copper Kapton flex circuits were explored
due to the ease of solderability of copper, and the common thermal expansion characteristics of a
copper Kapton flex circuit and the copper busbars. Etched copper Kapton flex circuits were not
used due to the complex manufacturing process, low thermal conductivity of the Kapton substrate
which would have caused an increased temperature gradient across the thickness of the foil, as well
as the rough surface characteristics of the etched patterns which would be required.

For the stainless steel foil, various attachment strategies were explored which included the
use of clamping mechanisms, electrically conductive tape, electrically conductive epoxies, and hot
soldering. Clamping mechanisms were deemed inappropriate due to their intrusion into the flow
field. Electrically conductive tapes exhibited too high of a bond electrical resistivity. Electrically
conductive epoxies advertised reasonably low bond electrical resistivity, however, there was no
success obtaining the advertised bond resistivity during the assembly process. As a result, there
was excessive heating at the joint between the heated foil and the busbar, which impacted the

measurement procedure, and also caused the foil to warp and debond. An intricate soldering
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process was developed to attach the thin stainless steel foil to the much thicker set of copper
busbars (which connected to the DC electrical power supply), while avoiding wrinkling of the foil
and also maintaining a strong, highly conductive bond. With this process, the width of the foil
could be reduced to 92.0mm, and the minimum thickness of the foil was 38.1um stainless steel. A
tedious tensioning process was used to ensure that the foil would not distort due to the stagnation
pressure of the impingement jets. Due to the difference in thermal expansion between the thin
stainless steel foil and the polycarbonate frame in which it was mounted, the foil was re-tensioned

periodically as the ambient temperature in the test cell and shop air supply varied with the seasons.

2.1.3 Power Supply and Heat Flux Measurement

Electrical current was supplied to the foil heater by a digitally controlled American Reliance PQ40-
165 DC power supply. The device is shown in Figure 2.7. The unit was operated in constant
current mode. Due to the relatively low resistance of the foil heater, the unit always ran at a very
low voltage, and the safety shutdown limit was set at 5V. A set of 7.348mmg (42.4mm?/1AWG)
copper wires were used to connect the DC power supply to the busbar connections on the test rig.
The wire and busbar connection are shown in Figure 2.6. The busbar and cables were sized to
carry a maximum of 150ADC. With this maximum current limitation, the foil heater was designed

to be capable of heat fluxes up to 56kW/m?.

images/TestRigPhotos/PowerSupply.png

Figure 2.7: DC Power Supply

DC current measurement is commonly performed by measuring the voltage drop across a preci-

sion shunt resistor. During the commissioning of the test rig, it was identified that this traditional
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technique was not acceptable. The test rig was to be operated throughout a wide range of currents,
which would have required several shunt resistors in order to accurately measure the current. In
order to keep shunt resistors from operating at high temperatures, they must be selected such
that the voltage drop is low. With the shunt resistor connected to the electrical ground, addi-
tional electrical noise was introduced, and with the low output voltage, the measurement quality
was deemed unacceptable. As an alternative, DC electrical current was instead measured via a
CTL-201/200 Hall effect current transducer manufactured by Ohio Semitronics, shown in Figure
2.8. Hall effect sensors have the capability to measure static and dynamic magnetic fields, making
them appropriate for DC electrical current measurement. The CTL-201/200 Hall effect current
transducer was purchased with a matching amplifier which provided a full scale output of 10V. The
transducer /amplifier combination were calibrated as a single unit from Ohio Semitronics. Ohio
Semitronics indicated that the unit was calibrated within +0.5% of the full scale output, and that
this calibration was determined with a confidence of 99.875%. Because the Hall effect current
transducer measures magnetic field strength, it is not as susceptible to electrical noise because the
transducer is not electrically grounded on the transducer end of the measurement circuit. The
Hall effect current sensor was configurable for a full scale output of 100A or 200A by changing the
number of passes the power cable makes through the transducers measurement window. The third
power cable visible in Figure 2.8 allows for ease of selection between the number of passes through
the transducers measurement window. The small window size, the large cable diameter and cable
connectors, as well as the solid core transducer design complicated this selection procedure, and
the third cable was added to overcome these obstacles. Although the power cables, busbars, and
current transducer were sized for current levels up to 150ADC, the facility has not yet been tested
at currents over 100ADC, as the range of Reynolds numbers surveyed in this study did not produce

high enough convective heat transfer rates in order require higher current levels.
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Figure 2.8: Hall Effect Current Transducer

Equation (2.6) used during the design process represents the heat flux in terms of the electrical
current, volumetric resistivity, foil thickness, and foil width. Foil width was measured with a ruler
during the assembly process. No volumetric resistivity of the stainless steel foil was specified by
the manufacturer. The volumetric resistivity of stainless steel foil is dependent upon the alloy of
stainless steel, as well as the material temperature. In addition, precise verification of uniform foil
thickness was difficult, as the foil was very thin and flexible. Due to all of these uncertainties,
measurement of the heated foil resistance directly was desired, rather than calculating it based on

derived quantities. Using Ohm’s law, the resistance of the foil can be represented by

R= (2.7)

v
1
where V represents the voltage drop across the foil heater. Using Equations (2.2), (2.4), (2.5), and

(2.7), the heated foil surface heat flux can also be represented by

" IxV

Afoil = (2-8)

I *w

In order to provide closure to Equation (2.8), the voltage drop (V) across the foil heater was also

measured by soldering two 0.255mmg (0.051mm?/30AWG) wires at each end of the measurement
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domain, and the distance (1) between the two attachment points was measured with a ruler. This
technique proved to be more tedious to implement than measuring voltage drop directly at the
busbar connection. However, it eliminated all voltage drops in between the busbar connection and
the measurement domain, which can be quite difficult to predict due to the soldering techniques
utilized to bond the stainless steel foil to the copper busbar. Because the foil heater circuit was
grounded on the negative side of the circuit, the electrical circuit for the voltage measurement was
left ungrounded on the end which was connected to the analog to digital conversion hardware, a
practice which is contradictory to traditional data acquisition configurations. It is important to

note that the resistance measured was a volume weighted average resistance of the foil.

2.1.4 Mass Flow Measurement

Impingement jet heat transfer characteristics are known to be highly dependent upon the im-
pingement jet nozzle Reynolds number (Reje), hence, it is very important to characterize Reje
accurately. In order to establish the impingement jet nozzle Reynolds number, the nozzle mass flow
rate was measured rather than measuring both the mean nozzle flow velocity and the mean nozzle
fluid density. Due to the complexity and intrusive nature of measuring the individual Reynolds
numbers for flow through each impingement jet nozzle, the total mass flow rate through all impinge-
ment jet nozzles was measured, and Rej,; was computed based upon the area weighted average
impingement jet nozzle mass flow rate. In terms of mass flow rate, the impingement jet nozzle
Reynolds number can be represented as

4

Rejer = NuymD

(2.9)

where 1 is the total mass flow rate through all impingement jet nozzles, N is the total number of
jets, w is the fluid viscosity, and D is the impingement jet nozzle diameter. With air as the working

fluid, the fluid viscosity was evaluated using the Sutherland Law for viscosity which states that [8]

3/2
H%(T> TotS (2.10)

w \To) T+S
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where g is the fluid reference viscosity, T is the fluid reference temperature, and S is the Sutherland
constant. For air, these parameters are 1.716 * 107°N % s/m?, 273K, and 111K, respectively [9].
The temperature of the fluid inside the impingement jet nozzle was assumed to be at the same
temperature as the fluid upstream in the pressure chamber, T',,stream, Which was measured with
thermocouples. In reality, some drop in temperature is expected as the fluid accelerates into the
nozzle, however, this change in temperature was assumed to be negligible due to the low fluid Mach
numbers inside of the impingement jet nozzles.

Mass flow rate was measured via a sonic converging diverging nozzle (choked venturi nozzle) due
to high accuracy, durable construction, and simple instrumentation technique. As with any flow
measurement device, there are limits within which the device can operate. In the case of a choked
venturi nozzle, the upper limit on the mass flow rate is bound by the structural limitations of the
venturi nozzle, which are dependent upon temperature and pressure, available supply air pressure,
and the range of the temperature and pressure measurement devices used. In Research Cell 21,
flow was limited on the upper end by the maximum shop air supply pressure, which operated at
approximately 8bar absolute. The lower limit on mass flow rate is determined by the minimum mass
flow rate in which sonic flow will occur in the throat of the nozzle. Although fluid is still able to flow
through a venturi nozzle at lower rates, measuring the mass flow rate becomes a greater challenge
when flow at the throat becomes subsonic. Additional temperature and pressure measurements
are required in order to establish the fluid velocity and density at the throat of the nozzle, which
involves additional instrumentation, signal conditioning, and data acquisition systems, as well as
increased venturi nozzle manufacturing costs.

In order for choked flow to occur at the throat of the nozzle, the ratio of the static pressure at the
throat of the nozzle (pnroqt) to the total pressure (pr) should be less than 0.528 (pinroat /P < 0.528)
[10]. As was mentioned earlier, manufacturing costs typically discourage pressure measurements at
the throat of the nozzle. As a result, static pressure is typically measured downstream of the nozzle,
and the static pressure downstream of the nozzle (pgownstream) is compared to the total pressure
upstream of the nozzle (piownstream/pr). If the nozzle is operating at paownstream/pr = 0.528
and there is negligible total pressure loss between the throat of the nozzle and the location of
the downstream static pressure measurement, the ratio of the static pressure at the throat to the

upstream total pressure, piproat/pr, Will actually be less than 0.528. This technique allows for a
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cheaper, more conservative process for verifying that the appropriate pressure ratio is maintained,
while limiting the minimum measurable mass flow rate to a higher value. With the pressure ratio
below 0.528 and the flow choked, some portion of the flow transitions to supersonic flow in the
divergent portion of the venturi nozzle. Flow then transitions to subsonic flow due to a normal
shock wave in the divergent portion of the venturi nozzle. Significant total pressure loss occurs in
the nozzle across this normal shock at low pressure ratios. With the required maximum pressure
ratio of 0.528, and the maximum supply air pressure in Research Cell 21, a venturi nozzle with a
throat diameter of 6.35mm (0.250in) was installed in the test rig in order to achieve the jet Reynolds
numbers of 4,000 through 15,000 for the results presented in Section 2.4. The test rig was designed
to also accept venturi nozzles of throat diameter 3.18mm (0.125in) and 8.99mm (0.354in) with the
38.1mmg (1.5inchg) piping utilized in the test rig, expanding the testable range of jet Reynolds
numbers to 1,000 to 30,000.

images/TestRigPhotos/sonic_nozzle.png

Figure 2.9: Uninstalled Converging Diverging Venturi Nozzle

In order to establish the mass flow rate through a choked venturi nozzle, the flow is idealized

as 1D, inviscid flow. The mass flow rate at the throat of the nozzle can be represented as

m = Pthroat * Athroat * Vihroat (211)
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where pihroat, Athroat; a0nd Vinroar are the density, cross sectional area, and velocity at the throat,
respectively. Because the cross section at the throat is a circle, the cross sectional area at the throat

can be easily calculated based upon its diameter (Dpoat) as
T
Athroat = ZDl%hroat (212)

If the venturi nozzle is choked, the velocity of the fluid at the throat is sonic. The speed of sound

a = \/’y (Rfluid) T (2.13)

where 7 is the ratio of the specific heat at constant pressure (c,) to the specific heat at constant

of a fluid is represented by [10]

volume (c¢y), Rfuiq is the specific ideal gas constant of the fluid, and 7" is the static temperature
of the fluid.
The static temperature of a fluid that is accelerated or decelerated to the speed of sound can

be represented by [10]

2

T = TT (’Y‘i‘l) = Tthroat (214)

where T7 is the total, or stagnation temperature of the fluid upstream of the venturi nozzle throat.

Substituting T30 into Equation (2.13) yields the speed of sound at the venturi nozzle throat as

2
roat — R ut T =V roa 2.15
Athroat \/’Y( Fluid) T<7+1> throat (2.15)

Using the ideal gas law, the density of the fluid at the throat of the venturi nozzle is

DPthroat
Pihroat = ——roat 2.16
throat Rfluithhroat ( )

Fluid static pressure can be determined based upon its total pressure (pr), Mach number (M), and

the ratio of specific heats (y) as [10]
_1 v/(1=)
p=pr <1 +1— M2> (2.17)
At the throat of a choked venturi nozzle, the Mach number is 1. Equation (2.17) can then be
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further simplified to

v/ (1=7)
L+ 7) (2.18)

Pthroat = PT (2

Upstream of the venturi nozzle, the Mach number is sufficiently low, such that the total pressure
(pr) and temperature (77) are approximately equal to the static pressure and temperature. Because
of this, the venturi nozzle upstream metering tube was designed such that the static pressure and
temperature would be measured, reducing the cost of the unit. In this impingement cooling test rig,
pr was measured with a pressure transducer, and 77 was measured with a thermocouple. Figure
2.10 shows the inlet metering tube, the venturi nozzle, and the outlet metering tube. A pressure
transducer with a full scale output of 1.03MPa was used for the upstream pressure measurement.
The upstream temperature measurement was made with a 0.127mmg¢ (.013mm?/36AWG) type J
thermocouple. The downstream pressure measurement was made with a pressure transducer with

a 34.5kPa full scale output.

images/Schematics/SonicNozzle-eps-converted-to.pdf

Figure 2.10: Nozzle Installed into the Supply Air Line

With the static pressure at the venturi nozzle throat known, the density at the venturi nozzle

throat can then be expressed in terms of known quantities using Equations (2.14), (2.16), and (2.18)
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as

(H_Tv)}'/(lfv)

pr

Pthroat = 9 (219)

Rflu'idTT <ﬁ>

Simplifying Equation (2.19) leads to
1/(1—=v)
pT 1+~

= 2.19
Pthroat RfluidTT ( 9 ) ( )

Substituting equations (2.12), (2.15), and (2.19) into Equation (2.11) yields

1/(1=7)
. pr 1+~ T o 2
= —-D Ritryia) I | —— 2.20
" Rflm-dTT< 2 ) " ”""“t*\/’” puse) T(wl (220)

Simplifying gives

—\ (1/2)
‘ 14~ /A=) T
m = &l (7 < 2 7) * ZDtQhToat (220)

V Bywidlr

Equation (2.20) represents the mass flow rate through a choked venturi nozzle, assuming ideal gas,
1D, isentropic flow. Equation (2.20) can be rewritten as

. pr T 52
m=C} ———— % —D 2.21
ideal * RfluidTT * 4 throat ( )

with

—_\ (1/2)
) 1\ (/=)
Cideal = (7 ( 9 7) (222)

and is called the one dimensional, isentropic, ideal gas critical flow function. In real flows, there
will be some anisentropy and real gas effects. In order to compensate for these deviations, the
venturi nozzle was calibrated. The testing laboratory, Colorado Engineering Experiment Station,

Inc. (CEESI), provided a modification to Equation (2.21) that can be represented as

m=CyxC* % —2L 4« "p2 (2.23)

Rypialr 4

where Cy is the discharge coefficient which accounts for anisentropy and 3D effects in the flow,

and C* is a real gas critical flow function. Both Cj and C* are determined experimentally by the
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venturi nozzle calibration procedure and have been tabulated by CEESI in the calibration report as
a function of throat Reynolds number [11]. Because throat Reynolds number is a function of mass
flow rate, an iterative process was required to determine mass flow rate based upon the measured
values, pr and Tp. As is evident in Equation (2.23), mass flow rate is linearly proportional to total
pressure upstream of the venturi nozzle throat. In order to vary the mass flow rate in the test rig,
the upstream pressure was regulated with a pressure regulator which was installed in line with the

flow.

2.1.5 Surface Temperature Measurement

Primary impingement surface temperature measurement was performed via a FLIR ThermoCAM
SC3000 infrared (IR) camera, which featured an image resolution of 320 by 240 pixels. The camera
utilized a GaAs Quantum Well Infrared Photon Detector (QWIP) which featured a spectral range of
8-9um. The detector was cooled by a Stirling chiller to 70 Kelvin. The IR thermography technique
relies on the principle of blackbody radiation to detect the surface temperature of an object. In
order for the highest signal to be read by the IR camera, the imaged surface was painted with
a black paint which had an emissivity of approximately 0.96. Because of the thin nature of the
heated foil impingement surface, both sides of the foil were assumed to be at an equal temperature.
With this assumption, the side of the foil opposite of impingement was imaged with the IR camera,
obtaining a spatial temperature distribution (Ts(z,y,t)) on the foil. The IR camera was attached to
a Windows XP workstation via a PCI frame grabber card, and the FLIR ThermaCAM Researcher
2000 software package was utilized to record each image. For each test case, 1500 frames were
recorded at a frame rate of 43.78 frames/second and the temperature distribution for each frame

was converted to the MATLAB data file format for post processing.
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Figure 2.11: Heated Surface as Viewed by the IR Camera

images/TestRigPhotos/IRCamera.png

Figure 2.12: Infrared Camera Mounted in the Test Rig

A mapping and alignment procedure was developed to map the physical space to that of each IR
camera pixel, and focus the camera. Although the IR camera records images with a size of 320 pixels

x 240 pixels, the measurement domain was reduced because the aspect ratio of the measurement
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domain did not match the aspect ratio of the IR camera. The measurement domain was reduced
additionally due to excessive thermal conduction near the connection of the thick copper busbar
to the thin stainless steel foil. Because of this effect, the measurement domain had to be truncated
such that an appropriate attenuation of this heat sink effect was achieved. Unfortunately, this
reduced the field of view such that only 45 impingement jets could be imaged, rather that the total
55 present in the test rig. In the high cross flow test case (single exit), the total number of jets
imaged was further reduced to 40 due to bending of the jets outside of the measurement domain
due to high cross flow. The resultant image resolution was approximately 1.8 pixels/mm.

In addition to surface temperature measurement with the IR camera, two 0.127mmg (0.013mm? /36 AWG)|]
type J thermocouples were soldered to the foil to allow for verification of the IR camera temperature
reading. Due to the voltage gradients in the foil, difficulty in placing the thermocouples at precisely
the same x location on the foil, and minor variations in resistance within the foil, the thermocouples
were configured to use separate reference junctions and were left ungrounded at the connection to
the analog to digital conversion hardware, a configuration contrary to traditional data acquisition

configurations.

2.1.6 Pressure Chamber Instrumentation

The fluid temperature was measured in the pressure chamber of the test rig using 0.127mmg
(0.013mm? /36 AWG) type J thermocouples. Three thermocouples were utilized in the pressure
chamber, and the measured values were averaged. Because this temperature is measured upstream
of the impingement jet nozzles, this average temperature is designated T'pstream- For all cases there
was less than .5 K variation between the maximum and minimum temperatures measured in the
pressure chamber.

Although used for references purposes only in the experimental component of this study, a
pressure transducer was also installed to measure static gauge pressure in the pressure chamber.
The full scale output of this pressure transducer was 17.24kPa. When operating at a jet Reynolds
number of 4,000, the transducer was reading approximately 340Pa, and at a jet Reynolds number
of 15,000, the transducer was reading approximately 2.05kPa. During the design process, larger
static pressures were anticipated in the pressure chamber during testing. Because of the mismatch

between the full scale pressure transducer measurement and the actual pressures being measured,
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static pressure measured in the pressure chamber was not used for boundary conditions for the
numerical simulations in Chapter 3. In future studies, a more appropriate pressure transducer is

recommended if accurate pressure data in the pressure chamber is desired.

2.1.7 Signal Conditioning and Data Acquisition

Except for the IR camera, all instrumentation was attached to a National Instruments SCXI series
signal conditioning and PXI series analog to digital (A/D) conversion hardware, shown in Figure
2.13. Data was set to be recorded at 200 samples/second for a period of 1 second. The data
was then time averaged in order to eliminate any noise introduced by the instrumentation, wiring,
etc. The National Instruments LabView software running on a Microsoft Windows XP workstation
was utilized to record data, perform averaging, calculate Reynolds number and heat flux, and to

monitor all parameters.
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Figure 2.13: National Instruments Data Acquisition System

2.2 Test Sequence

Each day of testing began by first ensuring that the foil heater was tight. If there was a significant
change in test cell temperature since the last day of testing, the foil could be warped due to thermal
expansion. If the foil was warped, it first was re-tensioned. Next, the test rig was configured for the
desired impingement jet target spacing (z/D spacing), and was then completely assembled. The

LabView and IR camera workstations were powered on. The IR camera was powered on. Because
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the IR camera incorporates a Stirling chiller in order to keep the detector at the appropriate
operating temperature of 70K, the camera had to be powered on approximately 6 minutes in
advance in order to give the device time to reach this temperature. The ambient atmospheric
temperature was entered into the FLIR Researcher software so that corrections could be made
to account for atmospheric transmission effects. The atmospheric pressure was entered into the
LabView interface. Bridge circuits on all pressure transducers were also rebalanced in order to
accommodate for the shift in atmospheric pressure since the last day of testing.

The air supply system was unlocked and powered on, but the pressure regulator was set at
0 Pa. Electrical power was supplied to the DC power supply, and the unit was powered on, but
set at a current of 0 Amps. The signal conditioning and A/D conversion hardware was powered
on. The supply air pressure was slowly regulated until the desired Reynolds number is achieved.
Once the desired Reynolds number was achieved, electrical power was supplied to the DC power
supply and the unit was powered on. In order to avoid thermal shock of the foil, the current
was increased such that the increase in heat flux was less than 300W/(m? * minute). When the
maximum temperature of the foil reached approximately 75°C and stabilized, the heat flux was
held constant. The thermocouples soldered to the foil were monitored in order to verify that the
temperature had indeed stabilized. This process took approximately 1 hour.

Once the temperature had stabilized, data was then recorded by both the LabView system and
the IR camera workstation. Records were also made in an electronic spreadsheet in order to log
the current flow configuration (jet Reynolds number, target spacing, exit configuration, etc.) After
data had been recorded, one of the exits was blocked. The current flowing through the foil was then
adjusted in order to maintain a peak surface temperature of approximately 75°C. Once the surface
temperature had re-stabilized (approximately 1 hour later), data was again recorded by both the
LabView system and the IR camera workstation. The Reynolds number was then increased. After
the Reynolds number was set at the next test point, the electrical current was adjusted, and the
temperature was allowed to stabilize. Data was recorded again. The spacer was then removed from
the exit, the electrical current was adjusted, and the temperature was allowed to stabilize. Data
was taken, the Reynolds number was increased, and the process then repeated until data for all
desired Reynolds numbers and exit flow configurations was obtained for the current target spacing.

After all testing was complete, the supply pressure/Reynolds number and current/heat flux were
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slowly decreased, avoiding thermal shock of the foil. Once supply pressure and current had been
reduced to zero, the supply pressure and power supply were shut down. After the shutdown was
complete, each frame recorded by the IR camera was exported as a MATLAB .MAT file for post

processing.

2.3 Post Processing Methodology

Incorporating all of the assumptions indicated in the previous sections in Chapter 2, the heat flux
of the impingement jets can be represented, for each flow configuration (Reynolds number, target

spacing, and exit configuration) by

q;'/ets - h(:(}, Y, t) * (TS('T7 Y, t) - Tupstream) = qggoil - q;i)sses (224)

Equation (2.24) can then be solved for h(x,y,t), the heat transfer coefficient, to obtain

1
T (l’, Y, t) - Tupstream)

h(z,y,t) = (q}/mj - ql/;sses) ( (2.25)

The local thermal conductivity of air, k(z,y,t), was evaluated using a linear fit of the thermal
conductivity of air vs. temperature, along with the local film temperature, Ty (x,y,t), on the
impingement side of the foil. The film temperature was evaluated by taking the average of the up-
stream air temperature (Typstream) and the surface temperature (Ts(z,y,t)). The non-dimensional

heat transfer coefficient (Nusselt Number) could then be represented as

h(z,y,t) * D

(2.26)

/!

losses Which accounts for some heat losses from the foil

Equation (2.24) includes the term ¢
heater that was not due to impingement jet heat transfer. All unheated boundaries in the test rig
are manufactured of an optically transparent polycarbonate which has a low thermal conductivity
(0.190 W/(m*K) [12]). Due to this low thermal conductivity, the assumption was made that these

surfaces are adiabatic. Natural convection losses on the imaged side of the foil heater were accounted

for using a correlation for laminar natural convection on a vertical isothermal surface. The foil
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heater surface is not isothermal, but was presumed to locally behave as an isothermal surface
because the dominant factor driving the temperature on the foil heater was forced convection due
to the impingement jets, rather than natural convection. The foil heater surface also did exhibit
some edge effects which may have caused natural convection to deviate from the ideal vertical
surface. Nusselt number for laminar natural convection of air on an isothermal vertical surface is

represented by [13]

Ntygtural = 0.387Ra}/* (2.27)

where Ra, is the Rayleigh number and is represented by

_ gx* ﬂ * (TS - Tambient) * yS
o xV

Ra, (2.28)

In Equation (2.28) the vertical dimension, y is relative to the bottom of the imageable edge
of the foil heater. T, npient i the static temperature of the ambient air in the test cell. g is the
acceleration due to the combined effects of gravity and centrifugal acceleration at the earth’s surface
and is assumed to be constant. [ is the expansion coefficient, which for an ideal gas is the inverse of
the film temperature. «a is the thermal diffusivity of the fluid which is defined as o = k/(pfiyiacp). v
is the kinematic viscosity, which is the ratio of the fluid dynamic viscosity (u) and the fluid density
(P fruid)-

In an effort to account for the variation in surface temperature in some way, the Rayleigh
number was computed locally based upon not only the vertical direction, but also on the spatial
variation in surface temperature. A spanwise average surface temperature was evaluated for each

horizontal position (z) and each time (t), and can be represented analytically by

1 H
Ts,spanwise(x; t) = E / Ts(x7 Y, t)dy (2'29)
0

where H represents the height of the imageable region of the foil heater. The spanwise average film
temperature on the natural convection side of the foil (T'fiim naturai(,t)) was then evaluated by
taking the average of the spanwise average surface temperature (T spanwise(,t)) and the ambient

temperature in the test cell (Tympient). This spanwise average film temperature on the natural
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convection side was then used to evaluate the thermal diffusivity (o fiim naturar) and kinematic
viscosity (Vfim natural). When evaluating the thermal diffusivity and kinematic viscosity at this
spanwise average film temperature, specific heat of air was assumed to be constant, density was
evaluated using the ideal gas law, the Sutherland Law for viscosity was used to account for the
temperature dependence of viscosity, and the thermal conductivity was evaluated using a linear fit,

as was done for equation (2.26). The resultant local Rayleigh number

g* (Ts,spanwise(xa t) - Tambient) * y3

Ts,spanwise(x’ t) * O film,natural * Vfilm,natural

Ray(x,t) = (2.30)

For all cases, this local Rayleigh number was monitored and verified to be less than 10° everywhere,
indicating that the flow should be laminar, and within the range of the correlation in Equation
(2.27).

Using the definition of the Nusselt number and the correlation shown in Equation (2.27), the

heat transfer coefficient due to natural convection on the imaged side can be estimated as

(0.387Ray(z,t)Y*) * knaturai (7, 1)

" (2.31)

hnatural (x7 Y, t) =

where knaturai(z,y,t) is the local thermal conductivity evaluated at the spanwise average film
temperature on the natural convection side (Tfiim natural(2,t)), using a linear fit for the thermal
conductivity of air. With this estimate for the natural convection heat transfer coefficient on the
imaged side of the foil heater, an estimate for the heat flux due to natural convection heat losses

can be made.

ql/gss,natural(wv Y, t) - hnatural<xv Y, t) * (Ts (.%', Y, t) - Tambient) (232)

It is evident that this technique is not rigorous, however, the approach was utilized due to the lack
of a better alternative.

In addition to losses due to natural convection, there were also losses on the imaged side of the
heated foil due to radiative heat transfer. When estimating radiative heat losses, the heated foil
was assumed to have a view factor to its surroundings in the test cell of unity. The test cell was

assumed to be at uniform temperature. With these assumptions, the heat flux on the surface due
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to radiative exchange can be estimated using the Stefan-Boltzmann law as

q;:)ss,radiation(xv Y, t) =€*x0 % (TS (CL‘, Y, t)4 - Tcilmbient) (233)

where o is the Stefan-Boltzmann constant, and € is the surface emissivity, which was approximately
0.96 for the black paint. Radiative heat transfer on the side of the foil heater which was cooled
by the impingement jets was considered to be negligible due to the low emissivity of unpainted
stainless steel.

The total estimated heat losses on the imaged side of the heated foil surface are the combination

of the natural convection and radiative heat losses:

q;/osses (1'7 Y, t) = ql”oss,natural (LL‘, Y, t) + qz:)ss,radiation (ZL‘, Y, t) (234)

All operations laid out in Equations (2.24) thru (2.34) were performed numerically using the
software application MATLAB. Scripts were developed to facilitate this process and can be reviewed
in Appendix A.2. The reader is encouraged to review these scripts, as the references for any physical
constants used are listed within the source code, rather than the References section. Results were
time averaged as well as span averaged. In an effort to simplify the post processing scripts, all
variables were stored in memory until the post processing script terminated. With this simplicity
came added memory demands which required the use of the 64 bit version of MATLAB. Surface
contours as well as line plots of spanwise averages are plotted and are presented in Section 2.4.
For selected cases, contours of Nusselt number were plotted for each time step. An animations was

then generated of the contours of Nusselt number using the command line tool FFmpeg.

2.4 Results and Discussion

Results obtained using the experimental test rig are presented and discussed in Sections 2.4.1 to

2.4.5. A summary of all cases is shown in Table 2.1.
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Jet Hole J Hole J Target J Hole Exit Sample
Reynolds | Spacingll Spacingll Spacingll Pattern Configuration] Time Test Date
Number | (x/D) | (y/D) | (/D) | (x x ) (5)
4,000 3 3 3 11x5 Double 34.26 2011-02-16
8,000 3 3 3 11x5 Double 34.26 2011-02-16
12,000 3 3 3 11x5 Double 34.26 2011-02-16
15,000 3 3 3 11x5 Double 34.26 2011-02-16
4,000 3 3 3 11x5 Single 34.26 2011-02-16
8,000 3 3 3 11x5 Single 34.26 2011-02-16
12,000 3 3 3 11x5 Single 34.26 2011-02-16
15,000 3 3 3 11x5 Single 34.26 2011-02-16
4,000 3 3 4 11x5 Double 34.26 2011-02-17
8,000 3 3 4 11x5 Double 34.26 2011-02-17
12,000 3 3 4 11x5 Double 34.26 2011-02-17
15,000 3 3 4 11x5 Double 34.26 2011-02-17
4,000 3 3 4 11x5 Single 34.26 2011-02-17
8,000 3 3 4 11x5 Single 34.26 2011-02-17
12,000 3 3 4 11x5 Single 34.26 2011-02-17
15,000 3 3 4 11x5 Single 34.26 2011-02-17
4,000 3 3 5 11x5 Double 34.26 2011-02-18
8,000 3 3 5 11x5 Double 34.26 2011-02-18
12,000 3 3 5 11x5 Double 34.26 2011-02-18
15,000 3 3 5 11x5 Double 34.26 2011-02-18
4,000 3 3 5 11x5 Single 34.26 2011-02-18
8,000 3 3 5 11x5 Single 34.26 2011-02-18
12,000 3 3 5 11x5 Single 34.26 2011-02-18
15,000 3 3 5 11x5 Single 34.26 2011-02-18

Table 2.1: List of Experimental Test Cases

2.4.1 Non-Dimensional Jet Standoff of z/D=3

Double Exit - Time Averaged Nusselt Number

Results obtained from the experimental test rig with two exits and at a non-dimensional target
spacing of z/D=3 are presented in Figures 2.14 to 2.18. Spatial dependence on Nusselt number is
presented for both the x and y directions. The spatial dimensions have been non-dimensionalized
based upon the impingement jet nozzle diameter. The intersection of each grid line represents the
center of each impingement jet nozzle. Although these results were obtained via an IR camera
with a fixed resolution of approximately 1.8 pixels/mm, the smoothing of the results was due to

an interpolation scheme which was built into MATLAB’s contour plotting functionality. As can
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be seen, Nusselt number (non-dimensional heat transfer coefficient) is highly spatially dependent.
At the core of the impingement jets, the convective heat transfer coefficient is the highest. At the
center of the impingement jet array (x/D=0) cross flow is at a minimum, if at all, and the variation
in Nusselt number is primarily a radial phenomenon. The heat transfer coefficient of the center
(x/D=0) is affected by the jet to jet interactions.

As was mentioned in Section 2.1.5, the measurement domain had to be reduced to observe only
45 jets for the double exit configuration due to challenges with the measurement technique near
the connection of the stainless steel foil to the copper busbar. This reduction consisted of 1 row
being truncated on the left and the right sides of the measurement domain. In the single exit
configuration, the bending of the jet core was different from that of the double exit configuration,
which resulted in an additional 1/2 of a jet being truncated on each side of the measurement
domain in order to include an integer number of rows of impingement jets, so that only 40 jets were
included in the measurement domain. In the single exit configuration, this reduction consisted of
1 row being truncated on the left side of the measurement domain and 2 rows were truncated on

the right side of the measurement domain.
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Figure 2.14: Re=4,000 - Double Exit - z/D=3 - Time Averaged Nusselt Number - Experimental

As the flow travels towards the exits, cross flow levels increase and the Nusselt number is no

longer primarily a radial phenomenon. The cores of the jets are bent, and the region of highest
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heat transfer coefficient is no longer in line with the centers of the impingement jet nozzles. An
interesting characteristic is that the region of highest heat transfer coefficient is shifted in both the
x and y directions as the flow travels towards the exits. The shape of the region of highest heat
transfer coefficient also changes with both spatial directions. These variations in the y direction
are believed to be caused by the additional space between the outer rows and the sidewalls when
compared to the spacing between jets (as was described in Section 2.1.1), rather than an interaction

with the walls themselves.
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Figure 2.15: Re=8,000 - Double Exit - z/D=3 - Time Averaged Nusselt Number - Experimental

It is evident that the heat transfer coefficient at the center of the jets is lower for the downstream
jets (closer to the exhausts) compared to the upstream jets (near x=0). Additionally, the local heat
transfer coefficient appears to decrease less rapidly with the distance from the jet centers for the
downstream jets compared to the upstream jets. Because the cross flow levels are much higher
closer towards the exits, the cross flow is believed to facilitate enhanced mixing in the areas outside

of the jet core, leading to the higher heat transfer coefficients outside of the jet core.
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Figure 2.16: Re=12,000 - Double Exit - z/D=3 - Time Averaged Nusselt Number - Experimental

As can be seen when reviewing Figures 2.14 through 2.18, the Nusselt number is highly de-
pendent upon jet Reynolds number. For the higher Reynolds number cases, some minor leakage
of air was observed during the testing process, primarily around the bottom edge of the heated
foil. This caused some additional convection heat transfer on the imaged side of the heated foil,
slightly affecting the measured heat transfer coefficient. In all cases, near x/D=0 and y/D=+7.5
there were also small regions where the measured heat transfer coefficient was adversely affected
by the thermocouples that were soldered to the foil surface. These thermocouples can be viewed
in Figure 2.11. Therefor, caution is advised when interpreting data in these spatial regions.

In an effort to provide consistency in comparing results from multiple cases, a fixed scale of 0 to
100 has been selected for all contours of Nusselt number. The higher Reynolds number cases have
some saturation in the contours presented. As a result, it is advised that the results for spanwise

average Nusselt number be compared in order to gain more quantitative insight of Nusselt Number.
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Figure 2.17: Re=15,000 - Double Exit - z/D=3 - Time Averaged Nusselt Number - Experimental

Figure 2.18 presents a time and span averaged Nusselt number for all Reynolds numbers with
two exits and a non-dimensional standoff distance of z/D=3. As can be seen, the time and span
averaged Nusselt number has a decreasing trend with distance from the center of the impingement
jet array. The maximum value of spanwise average Nusselt number is not located at x/D=0. It is
currently uncertain whether the slight misalignment of the center jet is due to a misalignment of

the IR camera or a physical characteristic of the flow.
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Figure 2.18: Double Exit - z/D=3 - Time and Span Averaged Nusselt Number - Experimental

Double Exit - Unsteady Nusselt Number

As can be seen in Figures 2.19 and 2.20, there is unsteadiness present in the Nusselt number
throughout the flow field. A detailed study was not attempted to spatially analyze the experimental
results in the time and frequency domains for each flow configuration. Preliminary investigations
showed that the frequency of the dominant unsteadiness in Nusselt number was on the order of 1
Hertz for the double exit case at a jet Reynolds number of 4,000 and a target spacing of z/D=3.
Future work could be conducted to further quantify the spatial and temporal variation in Nusselt
number for each flow configuration. There is some question, however, to the degree that the heat
capacity of the foil heater may dampen the measured time dependent characteristics. Further
investigations should be conducted to evaluate this effect prior to analyzing the present results in

more detail in the time and frequency domains.
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Animation in .mp4 format
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Figure 2.19: Re=4,000 - Double Exit - z/D=3 - Nusselt Number - Experimental

Animation in .mp4 format
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Figure 2.20: Re=15,000 - Double Exit - z/D=3 - Nusselt Number - Experimental

Single Exit - Time Averaged Nusselt Number

Figures 2.21 to 2.25 present results for time averaged Nusselt number for the single exit configuration
with a non-dimensional target spacing of z/D=3 for each jet Reynolds number. As can be seen,
heat transfer coefficient is highest at the left which corresponds to the closed end where cross flow

is at a minimum. Heat transfer coefficient is lowest at the right, which corresponds to the location
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closest to the exit, because cross flow is at maximum near the exit. Similarly to Figures 2.14 to
2.18, as cross flow is increased, heat transfer coefficient appears to reduce less rapidly with the
distance from the center of the jet core. In Figures 2.21 to 2.25, this effect is more pronounced

closer towards the exit due to the increased level of cross flow.
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Figure 2.21: Re=4,000 - Single Exit - z/D=3 - Time Averaged Nusselt Number - Experimental
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Figure 2.22: Re=8,000 - Single Exit - z/D=3 - Time Averaged Nusselt Number - Experimental

When comparing Figures 2.21 to 2.25 for the singe exit configuration to Figures 2.14 to 2.18 for
the double exit configuration it is interesting to note that, in addition to the reduction heat transfer
coefficient as the flow progresses towards the single exit, there is also a staggering of the region of
highest heat transfer coefficient near the left region (closed end) of the measurement domain. No
explanation for this effect has been identified. Although not presented in this document, animations
of unsteady Nusselt number were generated using the 34.26 seconds of data and reviewed, and did

not indicate that the staggering effect was an unsteady phenomenon.
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Figure 2.23: Re=12,000 - Single Exit - z/D=3 - Time Averaged Nusselt Number - Experimental
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Figure 2.24: Re=15,000 - Single Exit - z/D=3 - Time Averaged Nusselt Number - Experimental

Figure 2.25 presents the time and spanwise average Nusselt number for all Reynolds numbers
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at a non-dimensional target spacing of z/D=3 and a single exit configuration. As with the double
exit configuration, with an increasing amount of cross flow, the maximum time and span averaged
Nusselt number is decreased and the minimum time and span averaged Nusselt number is increased.
With the increased cross flow levels present in the single exit configuration, one can observe that
there seems to be somewhat of a critical cross flow level at a non-dimensional position of x/D=3
where the time and span averaged Nusselt number tends to decrease more rapidly for the higher

jet Reynolds number cases, particularly at a jet Reynolds number of 15,000.
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Figure 2.25: Single Exit - z/D=3 - Time and Span Averaged Nusselt Number - Experimental

Single Exit vs Double Exit - Time and Span Averaged Nusselt Number

Figures 2.26 to 2.29 compare time and spanwise average Nusselt for the single and double exit con-
figurations, at the same Reynolds number. It is evident that the time and spanwise averaged Nusselt

number is significantly higher for the majority of the surface for the double exit configuration.
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Figure 2.26: Re=4,000 - z/D=3 - Time and Span Averaged Nusselt Number - Experimental
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Figure 2.27: Re=8,000 - z/D=3 - Time and Span Averaged Nusselt Number - Experimental
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Figure 2.28: Re=12,000 - z/D=3 - Time and Span Averaged Nusselt Number - Experimental
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Figure 2.29: Re=15,000 - z/D=3 - Time and Span Averaged Nusselt Number - Experimental
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2.4.2 Non-Dimensional Jet Standoff of z/D=4

Figures 2.30 to 2.43 show the time averaged Nusselt number and time and span averaged Nusselt
number for a non-dimensional target spacing of z/D=4 for each jet Reynolds number tested and
both exit flow configurations. Although quantitatively lower than the z/D=3 cases, the results
appear qualitatively similar. At first thought, one might anticipate higher convective heat trans-
fer coefficients for the z/D=4 cases compared to the z/D=3 cases due to less intense cross flow
interactions resulting from the increased cross sectional area for spent jet air to travel towards
the exhaust(s). It appears, however, that the further deceleration of the flow prior to impacting
the target surface must cause a larger reduction in convective heat transfer than an increase in

convective heat transfer due to reduced cross flow.

Double Exit - Time Averaged Nusselt Number
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Figure 2.30: Re=4,000 - Double Exit - z/D=4 - Time Averaged Nusselt Number - Experimental
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Figure 2.31: Re=8,000 - Double Exit - z/D=4 - Time Averaged Nusselt Number - Experimental
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Figure 2.32: Re=12,000 - Double Exit - z/D=4 - Time Averaged Nusselt Number - Experimental
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Figure 2.33: Re=15,000 - Double Exit - z/D=4 - Time Averaged Nusselt Number - Experimental
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Figure 2.34: Double Exit - z/D=4 - Time and Span Averaged Nusselt Number - Experimental
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Single Exit - Time Averaged Nusselt Number
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Figure 2.35: Re=4,000 - Single Exit - z/D=4 - Time Averaged Nusselt Number - Experimental
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Figure 2.36: Re=8,000 - Single Exit - z/D=4 - Time Averaged Nusselt Number - Experimental
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Figure 2.37: Re=12,000 - Single Exit - z/D=4 - Time Averaged Nusselt Number - Experimental
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Figure 2.38: Re=15,000 - Single Exit - z/D=4 - Time Averaged Nusselt Number - Experimental
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Figure 2.39: Single Exit - z/D=4 - Time and Span Averaged Nusselt Number - Experimental
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Single Exit vs Double Exit - Time and Span Averaged Nusselt Number
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Figure 2.40: Re=4,000 - z/D=4 - Time and Span Averaged Nusselt Number - Experimental
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Figure 2.41: Re=8,000 - z/D=4 - Time and Span Averaged Nusselt Number - Experimental
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Figure 2.42: Re=12,000 - z/D=4 - Time and Span Averaged Nusselt Number - Experimental
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Figure 2.43: Re=15,000 - z/D=4 - Time and Span Averaged Nusselt Number - Experimental
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2.4.3 Non-Dimensional Jet Standoff of z/D=5

Figures 2.44 through 2.57 show the time averaged Nusselt number and time and span averaged
Nusselt number for a non-dimensional target spacing of z/D=>5. As was with the non-dimensional
target spacing of z/=4, the results appear qualitatively similar to cases with a closer target spacing.
The cases with z/D=>5 show a further reduction in time and span averaged Nusselt number when

compared to the z/D=4 cases.

Double Exit - Time Averaged Nusselt Number
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Figure 2.44: Re=4,000 - Double Exit - z/D=5 - Time Averaged Nusselt Number - Experimental
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Figure 2.45: Re=8,000 - Double Exit - z/D=5 - Time Averaged Nusselt Number - Experimental
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Figure 2.46: Re=12,000 - Double Exit - z/D=5 - Time Averaged Nusselt Number - Experimental
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Figure 2.47: Re=15,000 - Double Exit - z/D=5 - Time Averaged Nusselt Number - Experimental
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Figure 2.48: Double Exit - z/D=5 - Time and Span Averaged Nusselt Number - Experimental

96



Single Exit - Time Averaged Nusselt Number

images/ExperimentalResults/0040R4HD5E1H55-eps-converted-to.pdf

images/Arrows/RightArrow-eps-converted-to.pdf

Figure 2.49: Re=4,000 - Single Exit - z/D=>5 - Time Averaged Nusselt Number - Experimental
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Figure 2.50: Re=8,000 - Single Exit - z/D=>5 - Time Averaged Nusselt Number - Experimental
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Figure 2.51: Re=12,000 - Single Exit - z/D=5 - Time Averaged Nusselt Number - Experimental
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Figure 2.52: Re=15,000 - Single Exit - z/D=5 - Time Averaged Nusselt Number - Experimental
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Figure 2.53: Single Exit - z/D=5 - Time and Span Averaged Nusselt Number - Experimental
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Single Exit vs Double Exit - Time and Span Averaged Nusselt Number
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Figure 2.54: Re=4,000 - z/D=5 - Time and Span Averaged Nusselt Number - Experimental
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Figure 2.55: Re=8,000 - z/D=5 - Time and Span Averaged Nusselt Number - Experimental
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Figure 2.56: Re=12,000 - z/D=5 - Time and Span Averaged Nusselt Number - Experimental
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Figure 2.57: Re=15,000 - z/D=5 - Time and Span Averaged Nusselt Number - Experimental
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2.4.4 All Cases - Time and Area Averaged Nusselt Number

Figure 2.58 shows the time and overall surface area averaged Nusselt number (Nueqan) for all
experimental cases. Results are nearly linear with respect to jet Reynolds number. Time and area
averaged Nusselt number is also dependent upon exit flow configuration and the target spacing,

although more weakly than the jet Reynolds number within the ranges studied.
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Figure 2.58: Experimental Results - Overall Averages

2.4.5 Agreement with Historical Results

Due to the unique nature of the geometry presently studied, no similar study has been identified in
the public domain which could be used for detailed comparison of the results presented in Figures
2.14 to 2.58. As aresult, only qualitative comparisons can be made. The spatial variation in Nusselt
number seen in the present work shows qualitative similarities to studies presented by Huang et al.,
and Gao, among others, which studied the spatial variation in target surface Nusselt number[3, 14].

Historically, researchers have correlated the dependence of overall area averaged Nusselt number
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with jet Reynolds number by

Ntmean o< Reje (2.35)

where m is a coefficient dependent upon parameters such as the target spacing, hole pitch, and
cross flow. Florschuetz et al. proposed a value of m = .727 as a reasonable value of m for a wide
range of cases with minimal cross flow[15]. Within the narrow range of Reynolds numbers presently
studied, the dependence upon Reynolds number is nearly linear, which is in reasonable agreement
with the value of m = .727 proposed by Florschuetz et al.. Florschuetz et al., Kercher and Tabakoff,
and Gao, among others, saw qualitatively similar effects on Nusselt number with changes in jet
target spacing[l, 14, 15]. Huang et al. conducted a study, although geometrically different, varied
the cross flow level by changing the number of exits, as was done in this study[3]. Their study
exhibited qualitatively similar impacts on the overall area averaged Nusselt number when changing

from a double exit to a single exit configuration.
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Chapter 3

Numerical Study of Impingement Jet

Heat Transfer

3.1 Computing Workflow

Preprocessing (mesh generation, case setup, and coarse grid simulations) was performed on a local
workstation running the 64 bit Ubuntu 10.04 distribution of the Linux open source operating
system. The system featured 12 gigabytes of random access memory and a quad core Intel i7 central
processing unit operating at 2.8 gigahertz. The computational meshes were generated utilizing
the commercial computational fluid dynamics (CFD) meshing software Pointwise, developed by
Pointwise, Inc.. After mesh generation was complete, the mesh was exported to the Fluent case
file format as an unstructured mesh. The ANSYS Fluent 12.1.2 CFD solver was used for all
numerical simulations presented. Before each mesh could be used with the parallel Fluent solver,
the meshes first had to be loaded using the serial version of Fluent, and re-saved. Although a simple
task to perform, for larger meshes, the process required the use of a batch processing system in
order to perform this conversion on a system with sufficient random access memory. An automated
workflow was developed to transfer the mesh to the Hawk supercomputer at the Air Force Research
Laboratory Department of Defense Supercomputing Resource Center (DSRC) (located at Wright
Patterson Air Force Base in Dayton, Ohio) and schedule a job in the batch queuing system to

perform this conversion process and place the mesh into the archival file system for long term
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storage.

Once each mesh was converted to a format usable by the parallel version of Fluent, the solution
process could then be initiated. An automated workflow was developed using MATLAB in order
to generate the required batch submission scripts and Fluent journal file needed to conduct the
simulation. The development of this MATLAB code did introduce some additional workload at the
onset of this research, however, it was deemed necessary due to the cumbersome nature of the use of
the batch queuing system, workspace file system, archive file system on the Hawk supercomputer,
the extremely unreliable nature of the Fluent license server, as well as the size of the meshes being
used and the number of CFD simulations that were conducted throughout the course of this study.
In an effort to best imitate the flow conditions of the test rig, boundary conditions implemented
in the numerical simulations were copied directly from the measured experimental test data files
using the automated workflow. All other information related to the Fluent solver configuration,
such as the mesh used, number of CPUs, run time, discretization schemes, etc. were derived from
a case definition spreadsheet which the MATLAB script used as its input. In addition to the
time savings achieved with this automated workflow, the case definition spreadsheet used to define
solver settings for each CFD simulation also served as comprehensive documentation describing all
simulations conducted. In addition to developing batch submission scripts and Fluent journal files
for new CFD cases, the automated workflow was also able to continue a CFD simulation that was
terminated either due to a system failure at the DSRC, or failure to request a long enough run time
for the job. The source code for this automated workflow is included in Appendix A.3.1. With the
appropriate batch submission scripts and Fluent journal files generated, these files could then be
uploaded to the Hawk supercomputer and scheduled in the batch queuing system. The simulation
then began at a later date as determined automatically by the batch queuing system based upon
hardware and software license availability.

Once each simulation was complete, all files related to the run were copied to the archival file
system at the DSRC for long term storage. Post processing was performed on the local workstation
using MATLAB. The scripts generated for post processing are included in Appendix A. MATLAB
was selected for post processing because of the vast mathematical functions available as well as
its ability to tightly integrate the post processing of the numerical simulation results with the

experimental results. Additionally, due the vast amount of data automation required in performing
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time averaging as well as animating the solution data, the use of MATLAB exclusively was selected
as the most efficient approach. In an effort to reduce the amount of data transferred, stored, and
processed locally, solution data along two planes was exported to the ASCII format using Fluent.
The first plane was the impingement jet target surface, and the second plane was at the centerline
of the flow field (y=0). Unfortunately, the parallel version of Fluent does not have the capability
to export solution data to ASCII format. As a result, all data had to be reread by the serial
version of Fluent at a later time and then exported to ASCII format, rather than being exported
during the solution process while all solution data was still in memory. This drawback increased
the complexity of post processing as well as the post processing time dramatically. Because every
time step had to be explicitly loaded in Fluent, and ASCII data exported, another MATLAB
script was created to generate the required batch submission scripts and the corresponding Fluent
journal file. The source code to the script can be found in Appendix A.4.1. With the appropriate
batch submission scripts and Fluent journal files generated, these files were uploaded to the Hawk
supercomputer and scheduled in the batch queuing system. The exporting then began at a later
date as determined automatically by the batch queuing system based upon hardware and software
license availability. Once this batch exporting process began, the ASCII data was also copied to
the archival file system at the DSRC. When the process was complete, the ASCII data files were

copied to the local workstation and post processed using MATLAB.

3.2 Steady Simulations of Single Impingement Jets and Single Im-

pingement Jet Grid Dependency Study

In an effort to determine the baseline performance of a single jet and to validate the computational
mesh topology developed, the numerical component of this study was initiated with a study of
single impingement jets. A grid dependency study was conducted for a single jet configuration for
jet Reynolds numbers of 4,000 and 15,000 and a non-dimensional jet target spacing (z/D) of 3. Due
to the basic similarities in the flow physics found in multi jet configurations, a grid dependency
study for a single jet configuration was deemed an acceptable technique which could be conducted

with a significantly reduced computational expense.
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3.2.1 Computational Mesh

In an effort to resolve flow all the way down to the viscous sublayer, the design of the baseline
computational mesh targeted that the first grid point normal to each wall be located at a y* value
of approximately 1. Initial estimates for the boundary layer point distribution were made through
the use of experimental correlations for skin friction and boundary layer thickness of turbulent flow
over a flat plate. Although the impingement jet nozzle was a cylinder rather than a flat plate,
no correlations were identified for skin friction or boundary layer thickness in developing flow in a
cylinder. Approximating the cylinder as a flat plate was a sufficient assumption for the grid point

clustering process. Accordingly, yj{, the dimensionless distance at location L is defined as [16]

Ur,L)YN,L
i = rt) (3.1)

where v is the kinematic viscosity of the fluid, yn 1, is the distance normal to the surface at location

L, and u, , is the friction velocity at location L. The friction velocity, u, 1, is defined as [16]

U = [k (3.2)
P fluid

where 7, 1, is the local wall shear stress at location L. Substituting Equation (3.2) into Equation

(3.1), setting yz = 1, and solving for yy 1, yields

1%
Yn.p (3.3)

Tw,L
Pfluid

yt=1

The local wall shear stress, 7, 1,, was estimated using an experimentally determined correlation for

local skin friction, Cy r, of turbulent flow over a flat plate [17]
Cyp = .0592Re; '/ (3.4)

where Rey, is the Reynolds number based upon the distance, L, from the leading edge of the plate.

The skin friction coefficient is defined in terms of the local wall shear stress (7, 1), fluid density
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(Pfiuid), and free stream fluid velocity (Us) as

Tw,L

Crp = ——— 3.5
T fiaUZ, 2 (35)

Combining equations (3.4) and (3.5) and solving for 7, 1, yields

-1/5 2
Tw,L = .0592R6L PfluidUoo/Q (3.6)
Combining equations (3.3) and (3.6) yields
v

Yy (3.7)

vt=1 \/ 0592Re; PU2 /2

Equation (3.7) was evaluated at each jet Reynolds number (Rej.;) with location L equal to 10%
of the total length of the nozzle (0.953mm) and the first grid point normal to the wall was placed
at this location. At location L, and all downstream locations, flow should be resolved down to a
y* value of approximately 1. The first axial grid point was placed at 10% of the total length of
the nozzle. With this approach, the flow between the inlet to the nozzle and 10% of the nozzle
length was not considered to be fully resolved. The choice of 10% of the nozzle length was based on
engineering judgment. In the free stream, the grid point distribution was defined such that there
were approximately 25 equally spaced grid points per mm, also based upon engineering judgment.
At the outlet of the nozzle (L = 9.525mm), the boundary layer thickness (d1,) was computed using
an experimental determined correlation for boundary layer thickness of turbulent flow over a flat
plate [17]

5, = 0.37TLRe; '/® (3.8)

A single sided hyperbolic tangent interpolating function was used to distribute the grid points in
the boundary layer based upon the initial clustering at the wall, final clustering at the edge of the
boundary layer (which was equal to the free stream clustering of 25 grid points per mm), and the
thickness of the boundary layer. Clustering at the outlet of the nozzle in the axial direction was
defined such that the point spacing was two times the grid point spacing in the direction normal

to the wall of the nozzle. A hyperbolic tangent interpolating function was also used to define the
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axial grid point distribution in the nozzle. In the stagnation region, the same near wall normal grid
point clustering was used in the stagnation region as was used normal to the wall in the nozzle. In
the free stream, half way between the nozzle outlet and the impingement surface, the grid point
distribution was defined to be 1 grid point per mm, based upon engineering judgment. All other
grid point distributions were based upon engineering judgment. Single sided hyperbolic tangent
interpolating functions were used to distribute points for all connectors (line segments) that had
non uniform grid point spacing

A spreadsheet was developed to define the grid point count and length for all connectors in the
computational mesh with equally spaced points, as well as the endpoint clustering and the total grid
points on each connector in the mesh with non-uniform grid point spacing. The spreadsheet was
also used to define a uniform refinement (rounded to the nearest grid point) of the mesh for each
successive grid of the grid dependency study. For each successive grid used in the grid dependency
study, the grid point density was increased by a multiple of 1.3, id est, the distance between grid
points was successively reduced by a factor of 1/1.3. An alternative refinement scheme, which
increases the number of grid points by a factor of 1.3 was explored, however, this approach was
avoided due to the complexity in determining grid point spacing at the endpoints of the connectors
when using the single sided hyperbolic tangent interpolating function. Both approaches produce
similar refinement schemes when the number of grid points becomes large, however, changing the
distance between the grid points by a factor of 1/1.3 rather than changing the number of grid
points by a factor of 1.3 was selected due to an easier implementation of a uniform, systematic grid
refinement scheme.

Utilizing this spreadsheet, a new mesh could be rapidly developed with appropriate grid point
clustering for any jet Reynolds number. Due to the large number of grid points necessary in order
to appropriately resolve the flow and heat transfer in impingement jets at high Reynolds numbers,
a separate mesh was developed for each Reynolds number in order achieve appropriate clustering
with minimum number of grid points. This technique is most suited for Reynolds Averaged Navier
Stokes Equation (RANS) based models and for flows where high flow gradients are primarily due
to boundary layers, rather than other flow phenomenona, such as massive flow separation. In the
present study a RANS based solver was used, and all regions with high flow gradients were assumed

to be associated with boundary layers, making this technique applicable.
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Although the experimental test facility featured 55 impingement jets, rather than a single
impingement jet, effort was made to design the computational mesh for the single jet case to
replicate geometric features similar to that of the experimental facility. Accordingly, a cylindrical
nozzle diameter of 4.7625mm was used. The length of the nozzle was 2 nozzle diameters. The jet
standoff distance was defined to be 3 nozzle diameters. It should be noted that all dimensions in the
test rig were assumed to be the nominal dimensions specified on all drawings which were provided to
the manufacturer, all walls were assumed to be perfectly smooth, flat, and orthogonal to each other.
The impingement jet nozzle was assumed to be a perfect circle. The heated foil impingement surface
was considered to be of negligible thickness, and this thickness was not modeled in the numerical
study.

The basic mesh topology consisted of that depicted in Figure 3.1. This topology represents
1/4 of an impingement jet nozzle and a heated region of the impingement jet target surface. This
topology was then replicated, rotated, and extended to produce the mesh. The impingement jet
target surface as well as the nozzle plate were square and had a length and width of 6 nozzle
diameters. The computational mesh was generated using a block structured approach and was
then converted to the unstructured Fluent case file format. Isometric, bottom, and side views of

the computational mesh for the single jet case are shown in Figures 3.2, 3.3, and 3.4, respectively.
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Figure 3.1: Basic Mesh Topology

images/MeshImages/SingleHole/MESHOO09Isometric. pug

Figure 3.2: Single Jet CFD Case - Isometric View of the Computational Mesh
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images/Schematics/SingleHoleMeshTopView-eps-converted-to.pdf

Figure 3.3: Single Jet CFD Case - Bottom View of the Computational Mesh

3.2.2 Boundary Conditions

Due the the lack of a rigorous non-dimensionalization of all boundary conditions imposed in the test
rig, boundary conditions imposed in the numerical simulations were based on dimensional values
measured directly by the test rig instrumentation. Figures 3.3 and 3.4 also illustrate the boundary
conditions imposed. When implementing the measured experimental boundary conditions in the
numerical simulations, the same assumptions were made as when post processing the experimental
data. All walls were assumed to maintain a no slip and adiabatic boundary condition, with the
exception of the heated surface. The heated surface maintained a no slip condition with a constant
surface heat flux, and no conduction. Although natural convection losses were identified and
accounted for in the post processing of the experimental data, no natural convection was modeled

numerically, and as a result, was not accounted for during the post processing of the numerical
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data. The outlet boundary condition of the computational mesh was assumed to have a static
gauge pressure of zero and a total temperature of 300K. The reference pressure was defined to be
the atmospheric pressure that was measured during testing. The inlet temperature was assumed
to be uniform, and the mass flow rate was defined to be constant. For the single jet cases, the
constant mass flow rate at the inlet was defined based upon 1/55 of the area weighted average mass
flow rate through all jets in the test rig. Upstream turbulence intensity was not measured in the
test rig. A value of 0.7% was utilized for all simulations based upon the guidance of Dr. Shichuan

Ou.

images/Schematics/SingleHoleMeshSideView-eps-converted-to.pdf

Figure 3.4: Single Jet CFD Case - Side View of the Computational Mesh

The length and width of the heated region of the single jet case was defined to be 3 nozzle
diameters square, which was similar to the pitch used to distribute each of the 55 nozzles present in
the experimental test rig. As shown in Figure 3.3, a region of an additional 1.5 nozzle diameters on

all sides of the heated region was included in computational domain in order to ensure that the exit
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boundary condition of zero static gauge pressure was valid at the exit of the computational domain,
not causing any numerical instability, or affecting the accuracy of the entire flow field solution. This
additional region was not heated because the convective heat transfer becomes very low far from
the jet core, causing high temperature gradients which would have required an increased number
of grid points in order to properly resolve the flow field without numerical instabilities.

For the single jet grid dependency study, a time independent flow configuration was desired.
Boundaries on the mesh were defined such that there were four exits (i.e. the flow can exit in
any direction), which results in steady flow because the flow does not interact with any sidewalls
or neighboring jets. This steady flow was believed to have the highest heat transfer coefficient of
any impingement jet configuration, and is useful because it also provides an estimate on the extent
to which jet to jet interactions and cross flow interactions affect jet performance in an array of

impingement jets.

3.2.3 Fluent Solver Configuration

Fluent’s pressure based solver was used to solve the steady, 3D, compressible Reynolds Averaged
Navier-Stokes (RANS) Equations without the inclusion gravity. As in the experimental facility,
air was used as the working fluid in the numerical simulations of impingement jets. Although
the flow Mach number was always less than 0.3, high impingement surface heat flux drove large
temperature gradients in the flow, and as a result, significant fluid density variations existed, most
prominently within the boundary layer. The ideal gas density model was selected in order to
accommodate for the variable density of the working fluid. Additional fluid properties (thermal
conductivity, viscosity, and specific heat) for air were derived from Fluent’s integrated material
property database and were assumed to be constant. In order to provide closure to the RANS

Equations, the standard k—w model was utilized.

3.2.4 Solution Initialization and Convergence

The flow field was initialized with a zero velocity and the temperature was initialized to that of
the inlet temperature. Next, the mass flow rate boundary condition was activated. The solution
began by solving the continuity, momentum and energy equations with a first order upwind spatial

discretization scheme. No heat flux applied on the heated surface. After 50-500 iterations, the heat
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flux was then applied. This technique was required to avoid the surface temperature from rising
too quickly before the flow field was developed and before the impingement jet could begin to cool
the heated surface. As mentioned in Section 2.2, the flow also had to be stabilized in the test rig
before applying any heat flux, otherwise the facility would overheat. With the heat flux applied,
the solution then progressed until the standard scaled residuals automatically computed by Fluent
were less than 1079, for the x, y, and z momentum, as well as continuity, energy, k, and omega
equations.

Several attempts were made to accelerate the convergence process. The first attempt initialized
the velocity in the entire core of the jet to that of the free stream velocity, while leaving the rest
of the flow field at zero velocity. This technique resulted in a slower convergence rate. The second
attempt utilized a ramping of mass flow rate and heat flux boundary conditions up to the steady
state conditions, rather than beginning the simulation with boundary conditions set at their steady
state values. This technique resulted in virtually no acceleration in the convergence process and
was disregarded due to the increased complexity in the solution process.

The solution obtained using first order accurate spatial discretization schemes was then used as
an initial condition for a solution using second order accurate spatial discretization schemes. Several
parameters were monitored in order to evaluate the convergence of the solution using second order
accurate spatial discretization schemes. The standard scaled residuals automatically computed by
Fluent (for the x, y, and z momentum, as well as continuity, energy, k, and omega) were monitored.
The solution was assumed to be converged if all of the scaled residuals were less than 1076, If
this was achieved, the solution was then converged for an additional 3,000 iterations in order to
verify that the residuals continued to decrease and there was negligible change in the solution.
For several of the coarser meshes, the default scaled residuals computed by Fluent could only be
reduced to the order 10~3 with the present solution technique. For these cases, solution convergence
was evaluated solely based upon monitoring changes in the solution. The maximum and average
surface temperature were recorded and plotted during the convergence process. Animations of
surface temperature distribution on the entire heated surface, as well as a temperature profile
along the centerline of the heated surface were generated using images which were recorded every
10 iterations. The solution was assumed to be converged if, for the last 1500 iterations, the average

surface temperature changed less than .025K, the maximum surface temperature changed less than
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.0325K, and negligible temporal variation in surface temperature was observed when reviewing the

animations of temperature vs iteration.

3.2.5 Post Processing Methodology

Post processing of the numerical simulation results for the single jet cases followed the same process

!

losses Was set to 0, and there was

as described in Section 2.3, with the exception that the term ¢
no variation in the results with time. The most basic MATLAB functions used to perform this
processes can be found in Appendices A.4.5 and A.4.4. The top level script which generated all

Figures in the remainder of Section 3.2 can be found in Appendix A.4.9.

3.2.6 Grid Dependency Study Results

A summary of all grid dependency study cases is presented in Table 3.1.

Jet Hole Hole Target Hole Exit Grid Grid Point
Reynolds | Spacingl] Spacingl] Spacingl] Pattern Confieuratio Points Spacing
Number (x/D) (y/D) (z/D) (x xy) nfiguration] (million) Multiple

4,000 N/A N/A 3 1x1 Quadruple 1.2 1/1.371
4,000 N/A N/A 3 1x1 Quadruple 24 1/1.37

’ ' (baseline)
4,000 N/A N/A 3 1x1 Quadruple 5.6 1/1.31
4,000 N/A N/A 3 1x1 Quadruple 12.6 1/1.32
15,000 N/A N/A 3 1x1 Quadruple 1.2 1/1.371
15,000 N/A N/A 3 1x1 Quadruple 2.6 1/1.3°

’ P ' (baseline)
15,000 N/A N/A 3 1x1 Quadruple 5.9 1/1.31
15,000 N/A N/A 3 1x1 Quadruple 13.2 1/1.32

Table 3.1: List of Grid Dependency Study Cases

Results from the grid dependency study at a jet Reynolds number of 4,000 are presented in
Figures 3.5 to 3.10. Simulations were conducted using four different meshes. A baseline mesh was

generated using the procedure laid out in Section 3.2.1. Two additional meshes were generated
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by refining the baseline mesh, and the fourth mesh was generated by coarsening the baseline
mesh. The spanwise average Nusselt number is shown in Figure 3.5. As is readily evident, all
meshes yielded very similar results. The area weighted Nusselt number is presented in Figure 3.6.
Although the variation with increase in grid points may appear large and erratic at first glance,
it is important to note that the range of the vertical axis is very small. The absolute value of the
percent change in area weighted average Nusselt number is presented in Figure 3.7. The absolute
value of the percent change in the area weighted average solution is diminishing with increase in
grid points, indicating the computational meshes compared are of sufficient distribution and point
density. A more rigorous assessment is presented in Figure 3.8. In order to produce Figure 3.8,
data for each grid refinement case was interpolated to a uniform, common, 100x100 grid. Next,
a percent difference was calculated between each successive grid refinement case, for each of the
uniform 100x100 grid point locations, and the absolute value was determined at each of these
uniform grid point locations. The maximum absolute value was then located for each successive
grid refinement case, and the results are presented in Figure 3.8. Figure 3.8 shows that even locally
on the impingement jet target surface, the variation in surface Nusselt number is low, and the

change with increasing grid points is diminishing.
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images/NumericalResults/GridDependencyStudy/Re4000SpanwiseAverages-eps-converted-to.pdf

Figure 3.5: Single Jet - Re=4,000 - z/D=3 - Spanwise Average Nusselt Number - Numerical
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images/NumericalResults/GridDependencyStudy/Re40Q0AvgNu-eps-converted-to.pdf

Figure 3.6: Single Jet - Re=4,000 - z/D=3 - Area Weighted Average Nusselt Number- Numerical

images/NumericalResults/GridDependencyStudy/Re4000AbsPercentChangeAvgNu-eps-—cc

Figure 3.7: Single Jet - Re=4,000 - z/D=3 - Absolute Value of Percent Change in Area Weighted
Average Nusselt Number - Numerical
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Figure 3.8: Single Jet - Re=4,000 - z/D=3 - Maximum Absolute Value of Percent Change in Local
Nusselt Number - Numerical

Figures 3.9 and 3.10 show the y* value for the first grid point away from the target surface
in the normal direction for the coarsest and finest meshes, respectively. With the goal for the
first grid point normal to the target surface to be approximately at a y™ value of 1, both meshes
satisfied this requirement on the heated surface. Although not presented, in the impingement jet
nozzle, y* values for the first grid point away from wall, in the normal direction were also of similar
magnitude, except between the inlet of the nozzle, and the first axial grid point, a region which

was not expected to be fully resolved to the viscous sublayer.
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images/NumericalResults/SingleHole/CFD0036-yplus-eps-converted-to.pdf

Figure 3.9: Single Jet - Re=4,000 - z/D=3 - y* Value for the First Grid Point Away From the
Target Surface - Numerical (1.2 million grid points)

images/NumericalResults/SingleHole/CFD0O055-yplus-eps-converted-to.pdf

Figure 3.10: Single Jet - Re=4,000 - z/D=3 - y* Value for the First Grid Point Away From the
Target Surface - Numerical (12.6 million grid points)
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Figures 3.11 to 3.16 present results for the grid dependency study at a jet Reynolds number
of 15,000 for the baseline mesh, coarsened mesh, and two refinements. As for the case with jet
Reynolds number of 4,000, there was negligible change in the solution as the mesh was refined.
Interestingly, the absolute value of the percent change in area weighted average Nusselt number
increases with the number of grid points, as is evident in Figure 3.13, however, the absolute value of
the percent change in local Nusselt number is still decreasing with an increase in grid points. This
indicates that the solution is slowly changing locally in different directions, which can be observed
in Figure 3.11, and that with an increase in grid points, there is a diminishing change in the local

solution.

images/NumericalResults/GridDependencyStudy/Re15000SpanwiseAverages—-eps-converted-to.pdf

Figure 3.11: Single Jet - Re=15,000 - z/D=3 - Spanwise Average Nusselt Number - Numerical
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images/NumericalResults/GridDependencyStudy/Re15000AvgNu-eps-converted-to.pdf

Figure 3.12: Single Jet - Re=15,000 - z/D=3 - Area Weighted Average Nusselt Number - Numerical

images/NumericalResults/GridDependencyStudy/Re15000AbsPercentChangeAvgNu-eps—c

Figure 3.13: Single Jet - Re=15,000 - z/D=3 - Absolute Value of Percent Change in Area Weighted
Average Nusselt Number - Numerical
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Figure 3.14: Single Jet - Re=15,000 - z/D=3 - Maximum Absolute Value of Percent Change in
Local Nusselt Number - Numerical

images/NumericalResults/SingleHole/CFD0041-yplus-eps-converted-to.pdf

Figure 3.15: Single Jet - Re=15,000 - z/D=3 - y* Value for the First Grid Point Away From the
Target Surface - Numerical (1.2 million grid points)
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images/NumericalResults/SingleHole/CFD0O057-yplus-eps-converted-to.pdf

Figure 3.16: Single Jet - Re=15,000 - z/D=3 - y* Value for the First Grid Point Away From the
Target Surface - Numerical (13.2 million grid points)

As was shown in Figures 3.9 and 3.10, Figures 3.15 and 3.16 show that y™ values for the first
grid point away from the target surface in the normal direction for the coarsest and finest meshes
are approximately 1 everywhere. In the impingement jet nozzle, y values for the first grid point
away from wall, in the normal direction were also not presented for cases with a jet Reynolds
number of 15,000, however, they were also observed to be of similar magnitude, except between
the inlet of the nozzle, and the first axial grid point, a region which was not expected to be fully
resolved to the viscous sublayer.

With appropriate y™ values, and negligible change in local solution as the mesh is refined for
both jet Reynolds numbers studied, it has been shown that the the current mesh topology and grid
point clustering is appropriate for simulating flow and heat transfer of impingement jets using a

RANS based solver.

3.2.7 Single Jet Simulation Results at Re=4,000

Figures 3.17 through 3.22 present detailed results for the single jet case at a jet Reynolds number

of 4,000 for the finest mesh, 12.6 million grid points. Figure 3.17 shows the spatial variation in
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Nusselt number. For this single jet case with four exits, the variation in Nusselt number appears
to be purely a function of radius. Figures 3.18 to 3.20 display the in plane velocity magnitude
and velocity vectors on a plane taken about the centerline of the flow field. Figure 3.18 displays
an overall velocity field, and Figures 3.19 and 3.20 show more densely placed velocity vectors in
areas with boundary and free shear layers. It is interesting to observe that near the impingement
surface, after the flow has turned, both a boundary layer and a free shear layer occur due to the

high velocity fluid (“wall jet”) that is traveling nearly parallel to the impingement surface.

images/NumericalResults/SingleHole/CFD0055-Nu-eps-converted-to.pdf

Figure 3.17: Single Jet - Re=4,000 - z/D=3 - Nusselt Number - Numerical
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Figure 3.18: Single Jet - Re=4,000 - z/D=3 - In Plane Velocity Magnitude and Velocity Vectors -
Numerical

images/NumericalResults/SingleHole/CFD0055-VelocityZoomedlteps-converted-to.pdf

Figure 3.19: Single Jet - Re=4,000 - z/D=3 - In Plane Velocity Magnitude and Velocity Vectors
(zoomed) - Numerical
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Figure 3.20: Single Jet - Re=4,000 - z/D=3 - In Plane Velocity Magnitude and Velocity Vectors
(zoomed) - Numerical

Figure 3.21 shows the normal component of vorticity about the plane at the centerline of the
flow field. As can be seen, the flow is irrotational within the core of the jet, and in the free stream
of the impingement region. Within the free shear layers and the boundary layers, the flow is highly
rotational. The scale was saturated at +2500/s in order to make the vorticity throughout the
entire flow field interpretable. The static temperature has also been plotted about this plane at
the centerline of the flow and is shown in Figure 3.22. There is little variation between the inlet
temperature and the free stream temperature in the impingement region. There are, however,
high temperature gradients within the boundary layer on the impingement surface. These high

temperature gradients are what mandated the use of the compressible Navier-Stokes equations.
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Figure 3.21: Single Jet - Re=4,000 - z/D=3 - Normal Component of Vorticity - Numerical

images/NumericalResults/SingleHole/CFDO055-Temperature-eps+converted-to.pdf

Figure 3.22: Single Jet - Re=4,000 - z/D=3 - Static Temperature - Numerical

3.2.8 Single Jet Simulation Results at Re=15,000

Additional results for the single Jet case at a jet Reynolds number of 15,000 are presented in Figures
3.23 to 3.28 for the finest mesh, 13.2 million grid points. The results appear qualitatively similar

to those presented in Figures 3.17 to 3.22.
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Figure 3.23: Single Jet - Re=15,000 - z/D=3 - Nusselt Number - Numerical

images/NumericalResults/SingleHole/CFD0057-Velocity—-eps-con

lverted-to.pdf

Figure 3.24: Single Jet - Re=15,000 - z/D=3 - In Plane Velocity Magnitude and Velocity Vectors

- Numerical
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Figure 3.25: Single Jet - Re=15,000 - z/D=3 - In Plane Velocity Magnitude and Velocity Vectors
(zoomed) - Numerical

images/NumericalResults/SingleHole/CFD0057-VelocityZoomed2+teps-converted-to.pdf

Figure 3.26: Single Jet - Re=15,000 - z/D=3 - In Plane Velocity Magnitude and Velocity Vectors
(zoomed) - Numerical
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Figure 3.27: Single Jet - Re=15,000 - z/D=3 - Normal Component of Vorticity - Numerical

images/NumericalResults/SingleHole/CFDO057-Temperature-eps+converted-to.pdf

Figure 3.28: Single Jet - Re=15,000 - z/D=3 - Static Temperature - Numerical

3.3 Unsteady Simulations of Single Impingiment Jets with a Re-

peating Boundary Condition

In an effort to study jet to jet interactions without cross flow, two simulations were conducted of a

single jet with a pair of repeating boundaries at Re=4,000, rather than four exits, as was described
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in Section 3.2. The two repeating boundaries served to simulate an infinite row of impingement
jet nozzles. This configuration will be referred to as “Single Jet Repeating”. A summary of key

parameters of each case is presented in Table 3.2.

Jet Hole Hole Target Hole Exit Sample | Grid Case
Reynolds | Spacingl]l Spacing Spacingl] Pattern C nf;{ ' rati Time Points Number
Number | (/D) | (y/D) | (z/D) | (x x y) | Confiewrationh T | pmition) g NP

4,000 N/A “ 6 ” 3 1x00 Double 11 2.4 1

(“virtual”)
4,000 N/A “ 3 . 3 1x00 Double 11 1.9 I
(“virtual”)

Table 3.2: List of Single Jet Repeating CFD Cases

3.3.1 Single Jet Repeating Case I: Computational Mesh, Boundary Conditions,

Solver Settings, Solution Initialization and Solution Convergence

The computational mesh for the Single Jet Repeating Case I was identical to the baseline mesh
that was used for the Re=4,000 in Section 3.2, except the boundary conditions at two of the
outlets were changed to a pair of repeating boundaries. Figure 3.29 illustrates this. All other
boundary conditions were identical to those imposed for the Re=4,000 case in Section 3.2. The
solution initialization process was identical as well. After 5,000 iterations were conducted with
a second order spatial discretization scheme, it was identified that this flow configuration was
indeed physically unsteady. As a result, the simulation was changed from a steady state approach
to a time accurate approach with a second order temporal discretization scheme. A time step
of 0.022 seconds was used. Fluent’s iterative time advancement scheme was utilized and 30 sub
iterations were conducted for every time step. The solution progressed for 727 time steps, or 16
physical seconds. Solution data for the entire flow field was saved for each time step. During
the solution process, the standard scaled residuals automatically computed by Fluent for the x,
y, and z momentum, as well as continuity, energy, k, and omega equations were monitored and
were reduced to an order of 1073, Average surface temperature was monitored. After 226 time

steps (4.972 physical seconds), the average surface temperature was observed to have changed less
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than 1.25K over the last 100 time steps (2.2 physical seconds), and was observed to be changing in
primarily a cyclical manner, indicating that all startup transients effects due to the initialization
of the flow with zero velocity should have negligible impact on the flow field after time step 226.
Additionally, the velocity in the core of the jet was of order 15m/s, which would indicate that
a flow particle would travel approximately 75 meters over the 4.972 second interval, a distance
significantly larger than the distance from the inlet of the nozzle to the exhaust boundaries modeled
in the computational mesh. Also indicating that any startup transient effects should have traveled
to the exhaust boundaries by time step 226. All results presented used data from time steps number

227 to 727 (11 physical seconds), and have set t=0 seconds to refer to time step number 227.

images/Schematics/SingleHoleRepeatingWideMeshTopView-eps-converted-to.pdf

Figure 3.29: Single Jet Repeating Case I - Bottom View of the Computational Mesh

3.3.2 Single Jet Repeating Case II: Computational Mesh, Boundary Condi-

tions, Solver Settings, Solution Initialization and Solution Convergence

The computational mesh for the Single Jet Repeating Case II is similar to that of the Single Jet
Repeating Case I except the repeating boundaries were moved to the edge of the heated region

(closer to the impingement jet nozzle). The resultant mesh included 1.9 million grid points. This
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change was equivalent to moving the impingement jet nozzles in this infinite row closer together.
Figures 3.30 and 3.31 illustrate the computational domain setup for this case. The only other
difference in the solution process for this case from the Single Jet Repeating Case I was that no
second order steady solution was attempted because significant unsteadiness was observed with
this configuration even with first order spatial discretization schemes and the steady state solver.
The solution procedure transitioned directly from a steady state solution technique with first order
accurate spatial discretization to an unsteady solution technique with second order accurate spatial
and temporal discretization schemes after 36,960 iterations using the first order spatial discretization
schemes. As with the Single Jet Repeating Case I, a time step of 0.022 seconds was used and Fluent’s
iterative time advancement scheme was utilized with 30 sub iterations conducted for every time
step. Similar to the Single Jet Repeating Case I, all results presented used data from time steps

number 227 to 727, and have set t=0 seconds to refer to time step number 227.

images/Schematics/SingleHoleRepeatingNarrowMeshTopView-eps-convertedtto.pdf

Figure 3.30: Single Jet Repeating Case II - Bottom View of the Computational Mesh
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Figure 3.31: Single Jet Repeating Case II - Isometric View of the Computational Mesh

3.3.3 Post Processing Methodology

Post processing of the numerical simulation results for the single jet repeating cases followed the
same process as described in Section 2.3, with the exception that the term ¢;/ . was set to 0. The
most basic MATLAB functions used to perform this processes can be found in Appendices A.4.5
and A.4.4. The top level scripts which generated all Figures in the remainder of Sections 3.3.4 and

3.3.5 can be found in Appendices A.4.10 and A.4.11.

3.3.4 Single Jet Repeating Case I Results - Re=4,000, y/D=6

Results for the single jet case at a jet Reynolds number of 4,000, a non-dimensional target spacing
of z/D=3, and repeating boundary conditions spaced at a non-dimensional distance of y/D=6 are
presented in Figures 3.32 to 3.37. The time averaged Nusselt number, presented in Figure 3.32,
appears to be a function of not only radius, but also weakly a function of angular position. An

animation of the unsteady Nusselt number is presented in Figure 3.33. It is evident that significant
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unsteadiness was stimulated by changing two of the exits to a set of repeating boundary conditions.
Time averaged in plane velocity magnitude and normal component of vorticity are presented about
a plane at the centerline of the flow (y=0), parallel to the repeating boundaries, in Figures 3.34 and
3.36, respectively. When comparing with Figures 3.18 and 3.21, the results appear qualitatively
similar. However, when reviewing the animations of the unsteady in plane velocity magnitude and
normal component of vorticity shown in Figures 3.35 and 3.37, a wobbling of the jet core can be
observed. Results for time and spanwise average Nusselt number will be presented and discussed

in Section 3.5.

images/NumericalResults/SingleHoleRepeating/CFD0046TimeAverageNu-227-727-eps-conve

Figure 3.32: Single Jet Repeating Case I - Re=4,000 - z/D=3 - Time-Averaged Nusselt Number
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Animation in .mp4 format

videos/NumericalResults/SingleHoleRepeating/CFD0046-SurfaceNu-227-727 .mp4

Figure 3.33: Single Jet Repeating Case I - Re=4,000 - z/D=3 - Animation of Unsteady Nusselt
Number

images/NumericalResults/SingleHoleRepeating/CFD0046TimeAverageVelocityMagnitude-227-727-

Figure 3.34: Single Jet Repeating Case I - Re=4,000 - z/D=3 - Time-Averaged In Plane Velocity
Magnitude
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Animation in .mp4 format

videos/NumericalResults/SingleHoleRepeating/CFD0046-Sli¢eVelocityMagnitude-227-72

Figure 3.35: Single Jet Repeating Case I - Re=4,000 - z/D=3 - Animation of Unsteady in Plane
Velocity Magnitude at the Center Line of the Flow
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images/NumericalResults/SingleHoleRepeating/CFD0046TimeAverageVorticity-227-727-eps-conv

Figure 3.36: Single Jet Repeating Case I - Re=4,000 - z/D=3 - Time-Averaged Normal Component
of Vorticity

Animation in .mp4 format

videos/NumericalResults/SingleHoleRepeating/CFD0046-SligeVorticity-227-727 .mp4

Figure 3.37: Single Jet Repeating Case I - Re=4,000 - z/D=3 - Animation of Unsteady Normal
Component of Vorticity at the Center Line of the Flow
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3.3.5 Single Jet Repeating Case II Results - Re=4,000, y/D=3

Results for the single jet case at a jet Reynolds number of 4,000, a non-dimensional target spacing
of z/D=3, and repeating boundary conditions spaced at a non-dimensional distance of y/D=3
are presented in Figures 3.38 to 3.43. The time averaged Nusselt number, presented in Figure
3.32 appears to be a function of not only radius, but also a strong a function of angular position, a
significant difference between the single jet case with four exits and the single jet case with repeating
boundaries placed at y/D=6. The unsteadiness which can be observed in Figure 3.39 is significantly
more intense than that which was presented in Figure 3.33. Near the repeating boundaries there is
a region with significantly lower convective heat transfer. This is due to the stagnation flow that
occurs when the jet interacts with the nearby “virtual” jets, which are simulated by the repeating
boundaries. When observing the time averaged in plane velocity magnitude (Figure 3.40) as well
as the normal component of vorticity (Figure 3.42), the core of the jet appears to be weakened and
widened. Animations of unsteady in plane velocity magnitude and normal component of vorticity,
in Figures 3.41 and 3.43, respectively, show a wobbling of the jet with increased intensity when
compared to Figures 3.35 and 3.37. Results for time and spanwise average Nusselt number will also

be presented and discussed in Section 3.5.

images/NumericalResults/SingleHoleRepeating/CFD0045TimeAverageNu-227-727-eps-conve

Figure 3.38: Single Jet Repeating Case II - Re=4,000 - z/D=3 - Time-Averaged Nusselt Number
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Animation in .mp4 format

videos/NumericalResults/SingleHoleRepeating/CFD0045-Sur]

faceNu-227-727 .mp4

Figure 3.39: Single Jet Repeating Case II - Re=4,000 - z/D=3 - Animation of Unsteady Nusselt

Number
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Figure 3.40: Single Jet Repeating Case II - Re=4,000 - z/D=3 - Time-Averaged In Plane Veloci-
tyMagnitude

Animation in .mp4 format

videos/NumericalResults/SingleHoleRepeating/CFD0045-Sli¢ceVelocityMagnitude-227-72

Figure 3.41: Single Jet Repeating Case II - Re=4,000 - z/D=3 - Animation of Unsteady in Plane
Velocity Magnitude at the Center Line of the Flow
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Figure 3.42: Single Jet Repeating Case II - Re=4,000 - z/D=3 - Time-Averaged Normal Component
of Vorticity
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Animation in .mp4 format

videos/NumericalResults/SingleHoleRepeating/CFD0045-Sli¢eVorticity-227-727 .mp4

Figure 3.43: Single Jet Repeating Case II - Re=4,000 - z/D=3 - Animation of Unsteady Normal
Component of Vorticity at the Center Line of the Flow

3.4 Unsteady Simulations of Eleven Impingement Jets with a Re-

peating Boundary Condition

It was shown in Section 3.2 that the number of grid points required in order to accurately predict
Nusselt number was considerably large. It was also shown in Sections 2.4.1 and 3.3 that impinge-
ment jet flow becomes unsteady when jets are forced to interact with each other. The experimental
test rig was designed with 55 impingement jets. The rows of jets in the experimental facility were
equally spaced, however, the spacing between the outer rows and the sidewalls did not match the
pitch of the impingement jet array spacing (as was described in Section 2.1.1). With this difference
in spacing between the holes and the sidewalls, the flow geometry did not facilitate any approximate
simplifications through the use of repeating boundary conditions. Modeling a single row of holes
with the same spacing as the test rig, with a repeating boundary condition does not account for
the extra space between the outer rows and the sidewalls. This extra space in the test rig allows

for cross flow air to bypass the impingement jets and migrate towards the exits without impacting
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the performance of the downstream jets.

With the large mesh requirements for modeling a complete 55 jet case comes corresponding
computing demands. Fluent software license availability at the DSRC was limited due to the
popularity of the application which resulted in wait times of over one week before most large
simulations could even begin executing. In addition, the Fluent license server and the DSRC
resource checking proved to be extremely unreliable, resulting in effective wait times of many
simulations to be beyond two weeks. This would occur because the simulation would attempt
to begin running when no Fluent license servers would be available, resulting in the execution
of the simulation being immediately terminated. When this would occur, the job would have to
be re-queued and would have to wait in the queuing system again. Many times a job would be
running for days, and then terminate due to an unexpected failure of the license server. When
this happened, the failed case would have to be archived, and a new job initiated, which would
typically require many more days/weeks of wait time, before the new job could start. In addition
to these technical issues with the DSRC, the cumbersome nature of of the Fluent application
greatly increased the cycle time for completing simulations with large meshes. As was mentioned
in Section 3.1, many functions did not work while the Fluent application was running in parallel
mode. The Fluent application would have to be relaunched in serial mode in order to perform these
functions, greatly increasing the time to complete preprocessing, simulation, and post processing.
With all of these challenges, simulations of only 11 impingement jets could be accomplished. Due
to the fact that the flow geometry could not be modified to a smaller, but still representative flow
geometry for numerical simulations, two 11 jet cases were simulated, in an attempt to simulate
two possible extreme cases of cross flow, and jet to jet interactions. The first case incorporated
repeating boundary conditions spaced at a non-dimensional distance of y/D=4.03, and the second
incorporated repeating boundary conditions spaced at a non-dimensional distance of y/D=3. Both
cases were conducted for a jet Reynolds number of 4,000, and a nozzle to target spacing of z/D=3.

A summary of key parameters of each case is presented in Table 3.3.
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Jet Hole Hole Target Hole . Sample | Grid
Reynolds | Spacingl]l Spacing Spacingll Pattern Exit Time Points Case
Number | (x/D) | (y/D) | (z/D) | (xx y) | conhigwrationh = | mintion) g
4,000 3 “4f03 ” 3 11x00 Double 11 16.9 I
(“virtual”)
4,000 3 “ 3 ” 3 11x00 Double 11 14.3 II
(“virtual”)

Table 3.3: List of Eleven Jet Repeating CFD Cases

3.4.1 Computational Mesh, Boundary Conditions, Solver Settings, Solution Ini-

tialization, Solution Convergence, and Post Processing

For cases with multiple jets, a fixed, equal mass flow rate could not be applied to the inlet of each
nozzle, as was applied to the single jet cases. In the case of any real application of impingement jets,
as well as the experimental test rig that was developed, all nozzles will be placed at approximately
the same inlet pressure. Static gage pressure was measured inside of the pressure chamber in
the experimental test rig. However, as was mentioned in Section 2.1.6, the static gage pressure
within the pressure transducer was very low, on the order of 340Pa for the Re=4,000 case. During
the design of the test rig, a low static pressure was not originally anticipated and a pressure
transducer was installed which was calibrated with a full scale output of 17.24kPa. Due to this
low quality measurement, an alternate technique was required in order to incorporate the inlet
boundary condition.

A computational mesh was developed to also include a pressure chamber. When comparing
Figures 2.4 and 3.46, it is evident that the cross section of the pressure chamber was slightly
different than was used in the experimental test rig, however, the geometric differences were not
anticipated to effect the results significantly due to low flow gradients expected in the pressure
chamber. Modeling the pressure chamber facilitated capturing entrance effects in the impingement
jet nozzles, and also allowed for the use of the mass flow rate measurement made with the venturi
nozzle. With 11 nozzles, the mass flow rate was defined at the inlet of the pressure chamber to
be 1/5 of the mass flow rate measured through the venturi nozzle for all 55 nozzles present in the
test rig (rather than 1/55 which was used for the single jet cases). With a constant mass flow

rate boundary condition defined across the inlet of the entire pressure chamber, the pressure inside
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of the pressure chamber was approximately uniform throughout. This allowed for the numerical
solution to automatically compute the variation in mass flow rate through the individual nozzles.

As well as the addition of the pressure chamber, the 11 jet computational mesh incorporated
a longer unheated exit section when compared to the single jet cases, which matched the length
of the exit section in the experimental test rig. The mesh topology and point clustering in the
11 jet case was based upon the 1.2 million grid point mesh for the single jet case at Re=4,000.
Although this was the coarsest mesh used in the grid dependency study, it was selected in an effort
to obtain a solution of reasonable fidelity, while minimizing all technical issues discussed when using
Fluent at the DSRC. The grid point distribution in the pressure chamber and the exit sections were
defined based upon engineering judgment and were clustered to avoid any discontinuities with the
remainder of the mesh. In the pressure chamber upstream of the impingement jet nozzle inlets, a
course grid point distribution was used due to the very low flow gradients expected. Due to the
unsteady nature of the flow, the entire row of 11 nozzles was modeled, rather than implementing
a symmetric boundary condition at the centerline. The case with the repeating boundaries placed
at a non-dimensional distance of y/D=4.03 included 16.9 million grid points. The case with the
repeating boundaries placed at a non-dimensional distance of y/D=3 included 14.3 million grid
points.

Other than the changes in geometry mentioned, the solver configuration, solution process,
judgment of solution convergence, and post processing were identical to that of the Single Jet
Repeating Case II described in Section 3.3.2 except only 5,000 iterations were conducted with the
first order spatial discretization schemes and the variation in average surface temperature from
time step 126 to 226 was seen to vary up to 3K, rather than the 1.25K seen in Single Jet Repeating
Cases I and II. As with Single Jet Repeating Cases I and II, all results presented used data from
time steps number 227 to 727 (11 physical seconds), and have set t=0 seconds to refer to time step

number 227.
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images/MeshImages/ElevenHole/MESHOO16IsometricZoomed. png

Figure 3.45: Eleven Jet Repeating - Isometric View of the Computational Mesh - Close Up

images/Schematics/ElevenHoleMeshSideView-eps-converted-to.pdf

Figure 3.46: Eleven Jet Repeating - Side View of the Computational Mesh
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Figure 3.47: Eleven Jet Repeating Case I - y/D=4.03 - Bottom View of the Computational Mesh

images/MeshImages/ElevenHole/MESHOO16BottomViewZoomed.png

Figure 3.48: Eleven Jet Repeating Case I - y/D=4.03 - Bottom View of the Computational Mesh
(zoomed)
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Figure 3.49: Eleven Jet Repeating Case II - y/D=3 - Bottom View of the Computational Mesh
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3.4.2 Eleven Jet Repeating Case I Results - Re=4,000, y/D=4.03

Numerical results for the 11 jet case with a repeating boundary condition placed at y/D=4.03, a
non-dimensional jet target spacing of z/D=3, and a jet Reynolds number of 4,000 are presented
in Figures 3.50 to 3.60. Results for time averaged Nusselt number, shown in Figure 3.50, appear
qualitatively the same as the center row in Figure 2.14. With the increased spatial resolution
made possible via numerical simulation, sharper spatial gradients in time averaged Nusselt number
are observed. Figure 3.51 presents the time maximum y* value for the first grid point normal
to the wall of the impingement jet target surface. All y™ values are of the order of, or less than
1, indicating that a sufficiently fine grid point clustering scheme was used near the impingement
surface, despite the fact that the mesh was based upon the coarsest mesh in the grid dependency
study presented in Section 3.2.6.

Figures 3.52 to 3.57 present time averaged results on a plane constructed about the centerline
of the flow field (y=0). Figure 3.52 indicates the time averaged, in plane velocity magnitude. It
is readily evident that the velocity in the pressure chamber was indeed very low. The velocity is
highest in the impingement jet nozzles, and rapidly decreases as the jets approach and interact
with the target surface. The downstream jets are severely bent, and the core of the downstream
jets is significantly weakened prior to impacting the target surface. Figure 3.53 shows the normal
component of vorticity about the plane placed at the centerline of the flow. In the pressure chamber,
the velocity is very low and the fluid is nearly irrotational. Near the entrance to the impingement
jet nozzles, and near every wall downstream, the flow is rotational due to the boundary layers that
develop on the nozzle walls. In addition, in the free shear regions vorticity is very high. Counter
rotating vortices form as a result of the stagnation point at the intersection of two nearby jets.

Figures 3.54 and 3.55 show the time averaged static and total pressure, respectively, at the
centerline of the flow. Both the static pressure and total pressure are nearly uniform in the pressure
chamber due to the low flow velocity in the pressure chamber. As the flow accelerates through the
nozzles, the static pressure is reduced and so is the total pressure. Reduction in total pressure
is due to viscous losses in the flow field. There is some asymmetry in the pressure distribution
seen in Figures 3.54 and 3.55. This is believed to be due to the coarse point distribution utilized

in the upstream portion of the pressure chamber. Because this asymmetry is far upstream of the
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impingement jet target surface, it is not believed to effect the Nusselt number significantly.

Static temperature is presented in Figures 3.56 and 3.57. Throughout the bulk of the flow field,
the static temperature is nearly uniform. There is only a slight rise in free stream temperature
when comparing the static temperature in the pressure chamber to that of the impingement region.
This justifies the use of the assumption that the upstream temperature was approximately equal
to the free stream temperature when calculating the film temperature for evaluating the thermal
conductivity for the determination of Nusselt number. Near the impingement jet target surface,
however, large temperature gradients occurred within the flow field, as is evident in Figure 3.57,
which shows a close up of the fluid temperature near the impingement jet target surface at the in-
teraction of two nearby jets. These large temperature gradients were the dominant cause in density
variation in the flow field, which mandated that the numerical simulations solve the compressible
Navier-Stokes equations.

Figure 3.58 presents an animation of the unsteady Nusselt number. When comparing this
animation qualitatively to the animation of the experimentally determined Nusselt number in Figure
2.19, it is evident that the unsteadiness captured via the the numerical simulation is of higher
amplitude and frequency than that which was determined experimentally. It is believed that the
thermal conductivity, specific heat, and thickness of the stainless steel heated foil may have damped
the unsteadiness in the Nusselt number which was measured experimentally.

Figures 3.59 and 3.60 present animations of unsteady in plane velocity magnitude and normal
component of vorticity on the same plane as in Figures 3.52 and 3.53. As can be seen, flow
upstream of the impingement jet nozzles exhibits steady flow characteristics. Once the flow exits

the impingement jet nozzles, it becomes highly unsteady.
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Figure 3.54: Eleven Jet Repeating Case I - Figure 3.55: Eleven Jet Repeating Case I -
Re=4,000 - z/D=3 - y/D=4.03 - Time-Averaged = Re=4,000 - z/D=3 - y/D=4.03 - Time-Averaged|
Static Gauge Pressure - Numerical Total Pressure - Numerical

117



erted-to.pdf
ted-to.pdf

7-727-ep

Te-227-727-eps-conv:

geTemperatur

1Results/ElevenHole/CFDO051TimeAverageTemperatu
ricalResults/ElevenHole/CFD0051TimeAverageT

s/NumericalResu

images/Nune:

images
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Animation in .mp4 format

videos/NumericalResults/ElevenHole/CFD0051-SurfaceNu-227-727 .mp4

Figure 3.58: Eleven Jet Repeating Case I - Re=4,000 - z/D=3 - y/D=4.03 - Animation of Unsteady
Surface Nusselt Number

Animation in .mp4 format

videos/NumericalResults/ElevenHole/CFD0051-SliceVelocityMagnitude-227-727.mp4

Figure 3.59: Eleven Jet Repeating Case I - Re=4,000 - z/D=3 - y/D=4.03 - Animation of Unsteady
in Plane Velocity Magnitude at the Center Line of the Flow

Animation in .mp4 format

videos/NumericalResults/ElevenHole/CFD0051-SliceVorticity—-227-727.mp4

Figure 3.60: Eleven Jet Repeating Case I - Re=4,000 - z/D=3 - y/D=4.03 - Animation of Unsteady
Normal Component of Vorticity at the Center Line of the Flow

119



3.4.3 Eleven Jet Repeating Case II Results - Re=4,000, y/D=3

Numerical results for the 11 jet case with a repeating boundary condition placed at non-dimensional
spacing of y/D=3, a non-dimensional jet target spacing of z/D=3, and a jet Reynolds number of
4,000 are presented in Figures 3.61 to 3.71. These results are qualitatively similar to the results
presented in Figures 3.50 to 3.60 for the previous case with the repeating boundaries placed at
a non-dimensional spacing of y/D=4.03. This was expected due to the qualitative similarities
in geometry between the two cases. Although qualitatively similar, the results do show some
quantitative differences. The stagnation point due to the interaction of the nearby “virtual jets”
has been shifted with the repeating boundaries closer to the center of the impingement jets. Due
to this shift in the stagnation point, the corresponding reduction in convective heat transfer on the
target surface has also been shifted. Additionally, the bending of the downstream jets is more severe
due to the increased cross flow due to the reduced cross sectional area in the case with the repeating
boundaries placed at a non-dimensional spacing of y/D=3. A more quantitative comparison of the

two 11 jet cases will be presented in Section 3.5.
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Figure 3.67: Eleven Jet Repeating Case II - Figure 3.68: FEleven Jet Repeating Case II -
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Animation in .mp4 format
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Figure 3.69: Eleven Jet Repeating Case I - Re=4,000 - z/D=3 - y/D=3 - Animation of Unsteady
Surface Nusselt Number

Animation in .mp4 format

videos/NumericalResults/ElevenHole/CFD0059-SliceVorticity-227-727.mp4

Figure 3.70: Eleven Jet Repeating Case I - Re=4,000 - z/D=3 - y/D=3 - Animation of Unsteady
Normal Component of Vorticity at the Center Line of the Flow

Animation in .mp4 format
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Figure 3.71: Eleven Jet Repeating Case I - Re=4,000 - z/D=3 - y/D=3 - Animation of Unsteady
in Plane Velocity Magnitude at the Center Line of the Flow
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3.5 Comparison of Spanwise Averaged Results

Figure 3.72 shows the time and spanwise average Nusselt number for the 11 jet numerical case with
the repeating boundaries placed at a non-dimensional distance of y/D=4.03 (Eleven Jet Repeating
Case I), the 11 jet numerical case with the repeating boundaries placed at a non-dimensional
distance of y/D=3 (Eleven Jet Repeating Case II), and the center row of experimental results of an
array of 55 impingement jets, all with a double exit configuration, non-dimensional target spacing
of z/D=3, and a jet Reynolds number of 4,000. For the numerical case with y/D=4.03 and the
experimental case, data was truncated to y/D==+1.5 for the calculation of time and span average.
For all multi jet cases, the spanwise average was further truncated to x/D==1.5 in Figure 3.73.

It should be noted that the experimental results compared for this double exit configuration,
non-dimensional target spacing of z/D=3, and jet Reynolds number of 4,000, although of the same
flow conditions, are from a different day of testing than the experimental results presented in Section
2.4. The boundary conditions for all numerical simulations presented in Figures 3.72 and 3.73 were
copied from experimental data from the experimental case compared to in Figures 3.72 and 3.73,
rather than from data from an experimental case presented in Section 2.4. Although seemingly
inconsistent with the experimental component of this work, this approach was taken in order to
maintain consistency within the numerical portion of the study. The results presented in section
2.4 were recorded after the numerical study was initiated, and rather than redo all numerical cases
using the exact boundary conditions that were measured, the numerical study was continued using
boundary conditions from the same experimental case as when the numerical study was initiated.
No change was made in the experimental test procedure between the experimental results presented
in Section 2.4 and the results presented in Figures 3.72 and 3.73, except for a change in the time
sample recorded. For all unsteady cases presented in Figures 3.72 and 3.73, 11 physical seconds of
data was time averaged. Although 34.26 physical seconds of data were averaged in Section 2.4, only
11.42 physical seconds were averaged in this section due to the increased computational demand
with negligible change in solution.

As was discussed, neither 11 jet CFD case presented accurately reflected the flow geometry found
in the experimental test rig, however, the CFD cases presented were anticipated to provide some

upper and lower bounds on the time averaged Nusselt number. Reviewing Figure 3.72 shows some
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agreement with these expectations. Both CFD cases were in close agreement with the experimental
results near the center of the 3 central jets. The y/D=4.03 case showed an over prediction of
spanwise average Nusselt number near the center of the outer impingement jets. This over prediction
is expected because the y/D=4.03 case did not exhibit a stagnation region due to nearby jet
interactions within the range of y/D==+1.5, but rather, experienced a stagnation region due to
nearby jet interactions near y/D=+42.015, which was outside of the area used to compute the
spanwise averages presented in Figures 3.72 and 3.73. The y/D=4.03 case was expected to have
similar cross flow levels as was found in the test rig because the cross sectional area was matched
to that of the test rig. With similar cross flow levels, the phase of the time and spanwise average
Nusselt number more closely matched that of the experimental results.

The 11 jet case with y/D=3 featured similar nearby jet interactions as the experimental case,
however, due to the reduced cross sectional area when compared to the experimental case, featured
higher cross flow levels. These higher cross flow levels are clearly seen in Figures 3.63 and 3.64.
The phase of the time and spanwise average Nusselt number is further shifted from that of the
experimental results, and of the y/D=4.03 CFD case. Away from the center of the flow field, the
time and spanwise average Nusselt number decreases more rapidly than the other cases.

Both CFD cases feature an increase in time and spanwise average Nusselt number at x/D==+6.
The y/D=4.03 case also showed an increase in Nusselt number at x/D=+9 as well. Reviewing
Figures 3.50 and 3.61, it appears as though the core of the jet is spread out in these areas. It is
believed that this increase may be due to a critical level of cross flow. The experimental results
also showed a minor increase near x/D=+6 and x/D=+9. Further three dimensional analysis of
the flow field is required in order to provide a thorough explanation of this phenomenon.

All CFD results saw jagged and significantly lower troughs in the time and span averaged
Nusselt number at the mid point between neighboring jets when compared to the experimental
results. As can be seen in Figures 3.52, 3.53, 3.63, and 3.64, a stagnation region occurs where the
neighboring jets interact. Two counter rotating vorticies are formed at these stagnation points.
Also, in the stagnation region, the boundary layer is thickened and the heat transfer coefficient
is reduced. In these regions with low heat transfer coefficient, the surface temperature is sharply
elevated. It is believed that the negligible lateral conduction assumption stated in Section 2.1.2

may be invalid in these localized regions which could cause the post processing of the experimental
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results to indicate a higher convective heat transfer coefficient. An attempt was made to model
volumetric heating and three dimensional conduction in the heated foil using Fluent. However, this
was not successful. After days of troubleshooting, it is believed that there is some error in Fluent’s

implementation of the volumetric heat generation boundary condition.
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Figure 3.73 presents the time and spanwise average Nusselt number for all cases presented which

have featured at least 2 exits, a non-dimensional jet target spacing of z/D=3, and a jet Reynolds

number of 4,000. As mentioned earlier, the multi jet CFD and experimental results were truncated

to x/D==£1.5 and y/D==£1.5 in order to provide appropriate comparison to the single jet CFD

cases. A summary of all cases compared in Figure 3.73 is presented in Table 3.3.

Jet Hole Hole Target Hole Exit Sample | Grid Case
Reynolds | Spacingll Spacing Spacingl] Pattern . Time Points
Number | (x/D) | (/D) | (/D) | (xxy) | “OMEEN | minionyg NP
4.03 11 Jet
4,000 3 s ” 3 11x00 Double 11 16.9 Repeating
(“virtual”)j} C
ase |
5 11 Jet
4,000 3 ‘. ” 3 11xo00 Double 11 14.3 Repeating
(“virtual )' C
ase II
4,000 3 3 3 11x5 Double 11.42 N/A | 2010-11-23
6 Single Jet
4,000 N/A (“virtual” )I 3 1x00 Double 11 24 Reé)eatmg
ase |
3 Single Jet
4,000 N/A (“virtual” )' 3 1x00 Double 11 1.9 Rgpeatlng
ase II
4,000 N/A N/A 3 1x1 Quadruple N/A 12.6 1/1.32

Table 3.4: List of Spanwise Averages Compared

As can be expected, the single jet CFD case, with no cross flow and no jet to jet interactions

featured the highest spanwise average Nusselt number within the jet core. The Single Jet Repeating

Case I saw the second highest spanwise average Nusselt number. This case had no cross flow, and

the periodic boundaries were placed at spacing of y/D=6, which was outside of the heated region,

indicating that the nearby jet interactions simulated by the repeating boundary condition should

have provided negligible effect on the Nusselt number (as was evident in Figure 3.32). The next

highest case was the Single Jet Repeating Case II. This case had its repeating boundary conditions

placed at a spacing of y/D=3. With this close placement of the repeating boundary condition (and
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the associated “virtual” nearby jets), significant interactions between the neighboring jets were
present within the heated region, as was evident in Figure 3.38.

The central jet of the multi jet cases had the lowest time and spanwise average Nusselt number
of the numerical simulations. Although the central jet of the multi jet cases still should have
experienced little or no cross flow, the spanwise average Nusselt number was still lower than the
single jet cases with the repeating boundary conditions. This can be explained due to the additional
nearby jet interactions that occur in the multi jet cases with the repeating boundary condition,
as well as in the experimental results. The single jet cases with a repeating boundary condition
experience interactions with nearby jets on two sides of the jet. The multi jet cases with a repeating
boundary condition, and the experimental results experienced interactions with neighboring jets on
all four sides. The multi jet simulation with the repeating boundaries placed at a non-dimensional
distance of y/D=3 saw stronger interactions due to nearby jets, and the stagnation region near the
repeating boundary was within the range of y/D==+1.5 in which the Nusselt number was averaged.

It should also be restated that the jet Reynolds numbers used when conducting numerical
simulations for the single jet was based upon an area weighted average jet Reynolds number through
all jets in the matching experimental test case. For the central jet of the multi jet cases, the jet
Reynolds number through the central jet was slightly different than the jet Reynolds number of
the single jet cases. Also, as was mentioned in Section 2.4, there was some uncertainty whether the
offset of the center jet in the experimental results is due to a misalignment of the IR camera, or a
physical characteristic of the flow. Other than this offset, the multi jet cases were in fairly close

agreement with the experimental results near the jet core.
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Figure 3.73: Time and Span Averaged Nusselt Number - Single/Center Jet, Re=4,000, y/D=3 -
Numerical vs Experimental
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Chapter 4

Conclusions

A new experimental test facility was designed, manufactured, and commissioned for studying heat
transfer characteristics of an array of 55 impingement jets. Through the use of a steady state
Infrared Thermography technique, unsteady convective heat transfer characteristics, although mild,
could be observed. Results for target surface Nusselt number have been presented for jet Reynolds
numbers of 4,000, 8,000, 12,000, and 15,000. Two cross flow configurations have been studied
through the use of both a single exit, and a double exit configuration. For each Reynolds number
and exit configuration, non-dimensional target spacings of 3, 4, and 5 have also been studied. The
results show a strong dependency between the Nusselt number and the impingement jet Reynolds
number. The Nusselt number is also impacted by the exit flow configuration, and by the nozzle
to target spacing, although more weakly than jet Reynolds number for the ranges studied in the
present work.

There are several areas in which future work with this test facility could be directed. The
current test facility could be used to study the convective heat transfer characteristics throughout
the entire range of jet Reynolds numbers that the facility has been designed for (1,000 to 30,000).
Due to limitations of the present measurement technique, only 45 jets could be studied with the
double exit configuration, and only 40 jets could be studied for the single exit configuration, rather
than the entire 55 impingement jets present in the flow field. Some effort could be made to extend
range of the measurement domain with this Infrared Thermography technique to include all 55
impingement jets in the flow field. The present results agree qualitatively with trends presented by

previous researchers, however, no quantitative comparisons have been made. It may be worthwhile
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to modify the test rig geometry to better match a historically tested flow configuration. Such an
activity would allow for more detailed comparisons of results obtained using different measurement
techniques.

Numerical simulations were also conducted for a smaller class of impingement jet heat transfer
problems. Limitations due to number of licenses, and the reliability of the Fluent license server
limited the complexity of the geometry that could be studied. As a result, the flow fields studied
numerically were geometrically different than the experimental cases studied. Although of different
geometry, much was still gained from these results which have been obtained numerically, as well
as the process that was used to perform the simulations. Mesh topology and grid point clustering
schemes have been developed and evaluated, and can be useful for future studies. Results for the
baseline performance of single jets has been presented, and can be used as an upper limit on the
convective heat transfer coefficients possible with impingement jets. Several cases were investigated
with single impingement jets and a repeating boundary condition. These cases demonstrated the
impacts of jet to jet interactions on the Nusselt number of impingement jets, without cross flow.
The 11 jet case with y/D=3 demonstrated a configuration that was expected to have similar jet
to jet interaction effects as the central row in the test rig. However, it was not expected to have
the same cross flow effects. The 11 jet case with y/D=4.03 demonstrated a configuration that
was expected to have similar cross flow effects, but significantly different jet to jet interaction
effects. With all of these numerical simulations, further insight has been gained about flow and
heat transfer of impingement jets. The simulation results have been able to provide vast amount
of information regarding the three dimensional flow characteristics, data which was not obtainable
with the present experimental technique.

For any continuation of this combined experimental and numerical study of impingement jet
heat transfer, the experimental test facility should be modified such that representative geometry
can be studied numerically with a reduced computational burden. The simplest modification to the
test facility would be to manufacture a new impingement jet nozzle plate that features impingement
nozzle spacings of x/D=3 and y/D=4.03. Doing so would allow experimental results to be compared
to the current numerical results in a more meaningful way.

Some effort can be made to improve the boundary conditions implemented in the numerical

simulations. It is hypothesized that some lateral conduction may have been present in the heated foil
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which could have caused the experimental results to deviate from the numerical results, especially in
areas with low convective heat transfer coefficient, the spatial temperature gradient may have been
high, causing some lateral conduction in the foil. Further investigations should be performed to
validate this hypothesis. Also, an inlet turbulence intensity of 0.7% was used based upon guidance
of Dr. Shichuan Ou. As heat transfer can be significantly effected by turbulence intensity, it would
be best to measure the turbulence intensity in the pressure chamber of the test rig so that the
modeled turbulence intensity at the inlet can be defined to match the true turbulence intensity of
the experimental procedure. A fixed temperature on the outlet boundaries of 300K was used for all
cases. Although it is believed to have minimal impact on the convective heat transfer coefficient, in
future simulations, it may be best to define the outlet boundaries to match the ambient temperature
measured within the test cell.

The computational meshes developed were defined with a goal that on all walls, the first grid
point normal to the surface was placed at a maximum y* value of approximately 1. Although
this goal was achieved, no effort was made, however, to validate that the law of the wall was
indeed maintained within the turbulent boundary layers present in these numerical simulations of
impingement jets. Further effort could be conducted to validate that the solution technique did
indeed satisfy the law of the wall.

Transitioning to a more versatile, lower cost CFD solver, designed for high performance com-
puting, rather than Fluent, would allow for larger meshes featuring more complex geometry to be
studied. With the ability to solve more complex flow fields, the simulation of flow and heat transfer
in entire impingement jet arrays may be possible in a feasible amount of time. In addition to the
fact that the current study was not able to simulate the same geometry as was studied experimen-
tally, the use of repeating boundary conditions can have difficulty capturing the true unsteadiness
in such a complex flow field. Modeling the entire geometry present in the test rig will allow for the
unsteady effects to be more accurately resolved.

Using both experimental and numerical techniques, characteristics of impingement jet heat
transfer have been studied. In all cases studied, highly localized heat transfer characteristics were
observed. Due to the complexity of the flow field and the impacts of cross flow on convective
heat transfer characteristics, any heating/cooling system designer is encouraged to use the results

presented as a guide during the design process, however, detailed experimental and/or numerical
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studies of the exact flow configuration should be conducted prior to placing a part featuring an
impingement jet heating/cooling system into service. Due to the authors lack of experience in
numerical solution techniques at the onset of this study, some challenges driven by the complexity
of the desired flow configuration were not identified until after the test facility was completely
designed, commissioned, and operational, which impacted the ability to make meaningful compar-
isons between the results obtained using both techniques. Prior to initiating any future studies of
impingement jet heat transfer, one is encouraged to more thoroughly understand the implications

of the proposed flow configuration on both experimental and numerical methods.
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Appendix A

Matlab Script Source Code

A.1 Common Scripts
A.1.1 PlotNuContour.m

function [ContourFigure, ColorbarHandle]=PlotNuContour (Nu,X,Y,D, TargetRe , MinXD,MaxXD,MinYD,
MaxYD, MinNu, MaxNu, NuStep , HoverD , ContourScaleLabel , Time)
%plot results in two dimensions

%make the aspect ratio of the figure match that of the graph so minimal whitespace
exists in the exported images, but still not too large for the screen

MaxFigureHeight =900;

MaxFigureWidth=1700;

FigureHeight=MaxFigureHeight ;
FigureWidth=floor (FigureHeight % (MaxXD-MinXD) / (MaxYD-MinYD) ) ;
if FigureWidth>MaxFigureWidth
FigureWidth=MaxFigureWidth;
FigureHeight=floor (FigureWidth * (MaxYD-MinYD) / (MaxXD-MinXD) ) ;
if FigureHeight <400
FigureHeight =400;
end
end

XZero=60;

Y Zero=XZero;

ContourFigure=figure (’OuterPosition’ ,[XZero YZero FigureWidth+XZero FigureHeight+
YZero], 'Name’ ,[ ’Re=" ,num2str( TargetRe)|) ; %big figure

contourf (X/D,Y/D,Nu,120, ’LineStyle’, 'none’);

hold all

%contour (X/D,Y/D,Nu,60); %this line doesn’t seem to work for some reason
colormap ( ’gray ’)

caxis ([MinNu, MaxNu])

FontSize=40;
LineWidth=3;
ColorbarHandle=colorbar;
if “exist(’ContourScaleLabel’, ’var’)
ContourScaleLabel="Nu’;
end
set (get (ColorbarHandle, >ylabel ’) ,’String’, sprintf(ContourScaleLabel), ’'Rotation’,
90, ’VerticalAlignment’, ’Bottom’,’FontSize’ ,FontSize)

set (gca, ’FontSize’ ,FontSize);
set (get (gca, ’XLabel’) ,’FontSize’ ,FontSize);
set (get (gca, ’YLabel’) ,’FontSize’ ,FontSize) ;
set (gca, ’LineWidth’ ,LineWidth)
set (ColorbarHandle , ’LineWidth ’ ,LineWidth) ;

(

set (ColorbarHandle , ytick >, [MinNu:NuStep:MaxNu])
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%adjust the location of the colorbar
LocateColorbarLabel = get(ColorbarHandle, ’ylabel’);
pos = get(LocateColorbarLabel , ’position ’);

pos(1,1) = pos(1,1)+10;

set (LocateColorbarLabel , ’Position’,pos);

xlabel (’x/D’);
ylabel (’y/D’);
daspect ([1 1 1])

if exist(’Time’, var’)
title ([ 'Re=’",thousands(TargetRe),’.—_z/D=" ,num2str(HoverD) ,’ _—_t=" ,num2str (
Time, *%07.4£7) ,’s’])
else
title ([ 'Re=’,thousands(TargetRe) ,’.—_z/D=",num2str(HoverD) ])
end
xlim ([MinXD MaxXD] )
ylim ([MinYD MaxYD])
set (get (ContourFigure , ’CurrentAxes’) ,’XGrid’,’on’,’YGrid’,’on’,’XMinorTick’, ’on’,’
YMinorTick’,’on’,’XTick’,[—15:3:15],’YTick’ ,[ —6:3:6])
set (gcf, ’Color’,’'w’)

end
A.1.2 PlotNuSpanwiseAverage.m

function [SpanwiseAverageFigure]=PlotNuSpanwiseAverage(SpanwiseTimeAverageNu ,X,D, TargetRe,
MinXD,MaxXD, Marker , LabelText , TitleText)
global SpanwiseAverageFigure

%plot results in 1 dimension
if exist(’SpanwiseAverageFigure’)
if ishandle(SpanwiseAverageFigure)
figure (SpanwiseAverageFigure)

%for some reason the following few lines

%didn 't allow the plot to keep altermnating the line colors
%and hold all works since the color map is closed every time
%plotting to this figure

%if ishold =1

% hold (get (SpanwiseAverageFigure , ’CurrentAzes’))
%end
hold all
else
%SpanwiseAverageFigure=figure (’OuterPosition ', [30 30 1600 900]);
%big figure
SpanwiseAverageFigure=figure (’OuterPosition’,[30 30 622 500]);
%small figure
end

end

plot (X/D, SpanwiseTimeAverageNu , *Marker ’ ,Marker) ;
xlim ([MinXD MaxXD])

xlabel (’x/D’);
ylabel (’Nu’);
title ([ 'Time_and.Span_Averaged .Nusselt _Number’ 6 TitleText]) ;
set (get (SpanwiseAverageFigure , ’CurrentAxes’), ’XGrid’,’on’,’YGrid’, ’on’,’XMinorTick’,
‘on’,’YMinorTick’, ’on’,’XTick’ ,[—15:3:15])
[7,7,7 ,currentlegend]=legend;
currentlegend {1,size(currentlegend ,2)+1}=sprintf(LabelText);
legend (currentlegend , ’Location’, NorthEast ) ;
end

A.1.3 thousands.m
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function output = thousands(input)
%add a thousands separator to a number to make it more readable

import java.text.x
value = DecimalFormat ;

output = char(value.format (input));

A.1.4 ReadExperimentalCaselListSpreadsheet.m

e e e e e e e e e e Tt e e e e e e e e e e e e It e e e Ie e e e ie ie e e e e e e e e e e e

%read additional descriptive

dat

a for this run

filehandle=fopen(PathToCaseListDataFile) ;

Fnote: if the number of delimiters is less than the total number of fields ,

Zmatlab just breaks the current row at the last defined delimiter

%such that the nezt field is on a new Tow.

Z%because of this, extra delmiters are put in so that if a new field is

%added, it will still work okay

CaseListData = textscan(filehandle , *%s_%s %s Y%s Yos Yos -Tos Jos Jos -Tos -Tos Jos Jos -Tos Jos Tos -Tos -Tos -To
s s Tos Tos Tos Tos Tos Tos Tos Tos Tos Tos Tos Tos Tos Tos Fos Tos Tos Tos >, > CollectOutput ’,1,  delimiter

AN A

fclose(filehandle); %close file

CaseListData=CaseListData {1,

1}

%simplify variable a little

%define wvariable and column mappings

CaseListDataVariables={

’Field _.Name’ ,’Column_.Number’,’ Units’,’String?’

>CaseNumber’ ,1,’’, no
b b b

number changes
’FirstTimeStep’,9, "’
’LastTimeStep’,10, "’
7D’ 711 , ’m7 , 7no’
’FoilWidth’ ;14 ,’'m’ ,’
’FoilLength’ 15, 'm’,

)

'no’

%make sure to change this below in for loop also if column

’CameraAlignmentDate’ ;13,7 'no’

>FoilEmissivity ’,16,’ "’ ’no

"HoverD’ 5,7’ ’no’
’Misc’,8,77, yes’

’ExitConfiguration’ 7, yes
b

>ActualH’ ,6, 'mm’ , "no

)

)

’ChannelWidth’,17,’m’, 'no’

"MinXD’ ,18, ", 'no’
"MaxXD’,19,’", 'no’
9 b

b ) K
argetRe’ 4, , 'no

} bl

%double check wvalues are mapped properly

disp(’-")

disp ( ’Check._and -make_sure_each_field is _properly _mapped_to_the_correct._variable )
for CaseListDataVariableCount=2:size (CaseListDataVariables 1)
%double check wvalues are mapped properly
disp ([ CaseListDataVariables{CaseListDataVariableCount ,1},’[’,CaseListDataVariables{
CaseListDataVariableCount ,3}, '] <——>_’,CaseListData{1,
CaseListDataVariables{CaseListDataVariableCount ,2}}]) ;

end
disp(’'please_wait’)

for CaseListDataCount=2:size (CaseListData ,1)
if strcmp(CaseListData (CaseListDataCount ,1) ,ExperimentalCaseNumber)
for CaseListDataVariableCount=2:size(CaseListDataVariables 1)
if strcmp(CaseListDataVariables{CaseListDataVariableCount ,4}, ’no’)

else

eval ([ CaseListDataVariables{CaseListDataVariableCount ,1},’=
str2num (CaseListData{CaseListDataCount ,
CaseListDataVariables{CaseListDataVariableCount ,2}});’])

)

eval ([ CaseListDataVariables{CaseListDataVariableCount ,1},’=
CaseListData{CaseListDataCount , CaseListDataVariables{
CaseListDataVariableCount ,2}};7]) ;
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end
end
end
end

T T TR et e e e e Ie e e e e e e e e e e e e e e e e e e e e e e e ie e e e ie e e e e e e e
A.1.5 ReadLabViewData.m

T e e e e e e e e e e e e e e e e e e e e e e e e e ie e e T ie ie e e e e e e e e e e e

%read LabView data for case

filehandle = fopen ([RawExperimentalDataPath,’/’ ,ExperimentalCaseNumber,’/’,
ExperimentalCaseNumber, . txt ’]) ; Jopen file

Znote: if the number of delimiters is less than the total number of fields,

%matlab just breaks the current row at the last defined delimiter

%such that the mext field is on a mew row.

%because of this, extra delmiters are put in so that if a new field 4is added, it will still
work okay

LabViewData = textscan (filehandle , '%s %s Y%s s Tos -Tos Jos os Tos -Tos Tos Jos -Tos Jos Jos -Tos -Tos Jos _os
Tos Tos Tos Tos Tos Tos Tos “Yos Tos Tos Tos Tos Tos Fos Tos Tos Tos Tos Ts 7, 7 CollectOutput > ,1, delimiter’
N

fclose(filehandle); J%close file

LabViewData=LabViewData{1,1}; %simplify wvariable a little

%define wvariable and column mappings

LabViewDataVariables={
’Field _Name’ ,’Column_Number’ ,’ Units’
’UpstreamAverageTemperature’ ,7, ’F’
’FoilVoltageDrop’,13,°’V’
>FoilCurrent’ ,12, A’
>AmbientTemperature’ 6, F’
>ActualExperimentalRe’ ,9, "
"mjets’,8, lbs/s’
>AtmosphericPressure’ 4, psia

I

%double check wvalues are mapped properly
disp (- ")
disp ( ’Check._and _make_sure_each_field .is _properly _mapped_to._the_correct._variable’)

)

for LabViewDataVariableCount=2:size (LabViewDataVariables,1)
%double check wvalues are mapped properly
disp ([LabViewDataVariables{LabViewDataVariableCount,1},’[’,LabViewDataVariables{
LabViewDataVariableCount ,3}, '] <——>.’ ,LabViewData{l,LabViewDataVariables
{LabViewDataVariableCount ,2}}]) ;
%assign the wvariable
eval ([LabViewDataVariables{LabViewDataVariableCount,1}, ’=str2num (LabViewData{2,
LabViewDataVariables{LabViewDataVariableCount ,2}});’]);
end

6 06 e e 6 e e e 6 e e e e e e e 6 e e e 6 e e i 6 e e o 6 e e e 6 e e i e e e e e 6 e e 66

Y%convert variables to SI units

UpstreamAverageTemperature=(UpstreamAverageTemperature —32)%5/9+273; %K
AmbientTemperature=(AmbientTemperature —32)%5/9+273; K
AtmosphericPressure=AtmosphericPressure/(1.4504%x10" —4); %Pa
FoilHeatFlux=(FoilVoltageDrop*FoilCurrent) /(FoilWidth*FoilLength) BV/m"2
mjets=mjets *.4536; %kg/s

A.2 Experimental Post Processing Scripts
A.2.1 plotmultiplecases.m

clc;

clear;

close all;

clear global

%add folder to the path where additional scripts are located
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10
11
12
13
14
15
16
17
18
19

addpath ../ ExperimentalDataCopy/impingement/analysis/

%define paths to read data from

BasePath="../../";

CaselListDataFile=’CaseList . txt ’;

ExperimentalData=’/Experimental /ExperimentalDataCopy/impingement/’;
RawExperimentalDataPath=[BasePath , ExperimentalData , ’/RawData/’|;
PathToCaseListDataFile=[BasePath , ExperimentalData, ’/analysis/’,CaseListDataFile];
OutputImageFolder=[BasePath,’/Experimental/post/’];

%list the case numbers to plot, group them, and define a marker for each grouping
CaseNumbers={
%’ casenumber ’, first spanwise average figure number/overall average curve number,’
marker’, second spanwise average figure number, marker’, third spanwise average
figure number, ’marker’

"0023RAHD3EIH55° ,2, '+’ ,2,’p’,1, '+’
"0022R4HD3E2H55° ,1,’p’,1,’p’,1, 0"
"0024RSHD3EIH55° ,2, 07,3, ’p’,2, '+’
"0025R8HD3E2H55 ,1, 7% ,4,'p’,2, 70"
"0027R12HD3E1H55" ,2, ’x’ ,6,'p’,3, '+’
"0026R12HD3E2H55 ,1,7.°,5,'p’,3, 70"
"0028R15HD3ELH55 ,2, s’ ,7, 'p’ ,4, '+’
"0029R15HD3E2H55 ,1,°d’,8, 'p’ ,4, 0"
"0031RAHDAEIH55 ,4, '+’ ,2, '+’ |5, '+’
"0030R4HD4E2H55 ,3,’p’,1, '+’ ,5, 0"
"0032R8HDAEIH55" ,4, 07,3, '+ ,6, '+’
"0033RSHDAE2H55° ,3, %’ ,4,’+’ 6,70
"0035R12HD4E1H55" ,4, '’ ,6, '+ ,7, '+’
"0034R12HD4E2H55 ,3,°. 7,5, '+’ ,7, 0"
"0036R15HD4EIH55" ,4, s’ ,7, '+’ ,8, '+’
'0037R15HD4E2H55" ,3,°d’ ,8, '+ ,8, 0"
"0040RAHD5EIH55 ,6, '+’ ,2, 70,9, '+’
"0039R4HD5E2H55 ,5,’p’,1,70°,9, 70"
"0041R8HD5SEIH55 ,6, 07,3, 0,10, '+’
"0042RSHD5E2H55 ,5, 7+’ ,4, 70,10, "0’
"0044R12HD5SELH55 ,6, ’x’ ,6, 0,11, '+’
"0043R12HD5E2H55 ,5,°.°,5, 0,11, "0
'0045R15HDSELIH55 ,6, s’ ,7, 0,12, '+’
'0046R15HD5SE2H55 ,5,°d’ ,8, 0,12, 0’

}s

OvarallAverageConfigurationsLabels={
%’ Configuration Name’, marker’
'z /D=3_—_Double_.Exit’, '+’
'z /D=3_—_Single_Exit’, ’p’
'z /D=4._—_Double_ Exit’, 0’
*
x

'z /D=4_—_Single _Exit’,’
'z /D=5_—_Double_ Exit ’,’
'z /D=5_—_Single _Exit’, .’
s

%add a chance to tweek the plot a little for each case
ScaleTweaksFirstSpanwiseAverageFigure={
’ylim ([min(get (gca,’YTick’’)).(max(get(gca,’’YTick’’))+20)])"’

"ylim ([min(get (gca,’YTick’’)).(max(get(gca,’ YTick’’))+20)])"’
"ylim ([min(get (gca, ’YTick’’)).(max(get(gca,’’YTick’’))+20)])"’
s

ScaleTweaksSecondSpanwiseAverageFigure={
’ylim ([min(get (gca,’YTick’’) ). (max(get(gca,’’YTick’’))+10)])"’

)
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"ylim ([min(get (gca,’’YTick’’))_(max(get(gca,’ YTick’’))+10)]
’ylim ([min(get (geca,’YTick’’)).(max(get(gca,’ YTick’’))+10)]

)

)7
)7

’ylim ([min(get (gca,’YTick’’)).(max(get(gca,’ ’YTick’’))+10)])"’
b

%first plot spanwise averages of the same exit and z/D
for FirstSpanwiseAverageFigureNumber=1:max(cell2mat (CaseNumbers(:,2)))

end

Fplot
close

CurrentlyFoundCases=0;
for CurrentCase=1:size (CaseNumbers,1)
if CaseNumbers{CurrentCase,2}==FirstSpanwiseAverageFigureNumber
CurrentlyFoundCases=CurrentlyFoundCases+1;
[OverallAverageNu (CaseNumbers{CurrentCase ,2} ,CurrentlyFoundCases ,2) ,
OverallAverageNu (CaseNumbers{CurrentCase ,2} , CurrentlyFoundCases
,1)]=ProcessDatausingPlotFunction (CaseNumbers{CurrentCase ,1},
RawExperimentalDataPath , PathToCaseListDataFile , CaseNumbers{
CurrentCase ,3}, "yes’,OutputImageFolder, >yes’) ;
end
end
eval(ScaleTweaksFirstSpanwiseAverageFigure{FirstSpanwiseAverageFigureNumber })
hgexport (gef, [ OutputImageFolder ,num2str(FirstSpanwiseAverageFigureNumber) , '—
SpanwiseAverageCommonzD . eps’])
close all

the owverall averages
all

figure (’OuterPosition’ ,[30 30 622 500]);
hold all
for CurrentConfiguration=1:size (OverallAverageNu,1)

end

plot (squeeze (OverallAverageNu(CurrentConfiguration ,: ,1)) ,squeeze(OverallAverageNu (
CurrentConfiguration ,: ,2) ), Marker’,OvarallAverageConfigurationsLabels{
CurrentConfiguration ,2})

[7,7, 7 ,currentlegend]=legend;

currentlegend {1,size (currentlegend ,2)+1}=sprintf(OvarallAverageConfigurationsLabels{
CurrentConfiguration ,1});

legend (currentlegend , ’Location’, ’NorthWest ’) ;

XLabels=[4000,8000,12000,15000];
for x=1:size(XLabels,2)

end

XlabelsFormatted {x}=thousands (XLabels(x));

set (gca, ’XTick’,XLabels)

set (gca, >XTickLabel’ ,XlabelsFormatted)

xlim ([min(XLabels) , max(XLabels)])

xlabel (’Reynolds _Number’)

ylabel(’Nusselt _.Number’)

set (gca, ’XGrid’,’on’,’YGrid’, ’on’,’XMinorTick’, ’on’, ’YMinorTick’, ’on’)
title ([ 'Time_and._Area_Averaged._.Nusselt .Number’]) ;

hgexport (gef ,[ OutputImageFolder , ’OverallAverageNu.eps’])

close all

Znext plot spanwise averages of the same exit and Re
for SecondSpanwiseAverageFigureNumber=1:max(cell2mat (CaseNumbers (:,4)))

for CurrentCase=1:size (CaseNumbers,1)
if CaseNumbers{CurrentCase,4}==SecondSpanwiseAverageFigureNumber
ProcessDatausingPlotFunction (CaseNumbers{CurrentCase ,1},
RawExperimentalDataPath , PathToCaseListDataFile , CaseNumbers{
CurrentCase ,5}, ’yes’,OutputImageFolder) ;
end
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end

end

eval (ScaleTweaksSecondSpanwiseAverageFigure{SecondSpanwiseAverageFigureNumber })

hgexport (gef ,[ OutputImageFolder ,num2str(SecondSpanwiseAverageFigureNumber) , '—
SpanwiseAverageCommonRe. eps’])

close all

Znext plot spanwise averages of the same Re and z/D
for ThirdSpanwiseAverageFigureNumber=1:max(cell2mat (CaseNumbers (:,6)))

end

%pause

for CurrentCase=1:size (CaseNumbers,1)
if CaseNumbers{CurrentCase,6}==ThirdSpanwiseAverageFigureNumber
ProcessDatausingPlotFunction (CaseNumbers{CurrentCase ,1},
RawExperimentalDataPath , PathToCaseListDataFile , CaseNumbers{
CurrentCase ,7}, ’yes’,OutputImageFolder, yes’, yes’);
end
end
ylim ([min(get (gca, 'YTick’)) (max(get(gca, YTick’))+5)])
hgexport (gef,[ OutputImageFolder ,num2str ( ThirdSpanwiseAverageFigureNumber) , ’—
SpanwiseAverageCommonRezD . eps ' |)
close all

%load (’../literature/han_bothezits_spanwiseaverage.mat’)

%hold all

%plot (Re4850(:,1)—Rel850(115,1),Ref850(:,2))

%[n,n,n, currentlegend]=legend;

%currentlegend{1, size (currentlegend ,2)+1}=sprintf ([ Han — Re=4850 H/D=3\nBoth Ezits ']) ;
%legend (currentlegend , "Location ’, "EastOutside ’) ;

% plot (Re9550(:,1)—Re9550(118,1),Re9550(:,2))

% [n,n,n, currentlegend]=legend;

% currentlegend{1,size (currentlegend ,2)+1}=sprintf ([’ Han — Re=9550 H/D=3\nBoth Ezits ’]);
% legend (currentlegend , ’Location ’, ’EastOutside ’) ;

A.2.2 ProcessDatausingPlotFunction.m

function [OverallAverageNu , TargetRe ,X,Y,D,MinXD,MaxXD, MeasurementDomainHeight , TimeAverageNu,
Nu]=ProcessDatausingPlotFunction (ExperimentalCaseNumber , RawExperimentalDataPath ,
PathToCaseListDataFile , Marker , PlotResults , OutputImageFolder ,zOverDinSpanwiseTitle ,
ReinSpanwiseTitle)

global SpanwiseAverageFigure

disp(".")
disp (’
disp ([ ’Starting_calculations._for._case _#’,ExperimentalCaseNumber])

")

%call a script that reads in data from the experimental case list spreadsheet/log
for the current case
ReadExperimentalCaseListSpreadsheet

%override if debuging to speed up.
%LastTimeStep=2
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%call a script that reads in lab wview data for the current caes
ReadLabViewData

%call a script which defines all of the alignment parameters
eval ([ ’CameraAlignment ’ ,num2str ( CameraAlignmentDate)]) ;

T T 66 e e e e e e e e e e e e e e e e e e e e I e e e ie e e e e it e e e e I e e it e e e ie e e e %

T 60 66 e 6 66 e 6 e a6 e I6 e e 6 e Ie e e e e Ie e e ie e i e e Ie e ie e e ie e io e e ie e ie 6 e ie e %

%define constants and perform wunit conversions

%define the acceleration due to gravity
g=9.807; %m/s "2, Incropera and DeWitt 5th edition

%specific ideal gas constant for air
R=287; %J/(kg+K), anderson, modern compressible flow, page 21

%specific heat of air at 300 Kelvin

cp=1007; %J/(kg+xK), Incropera and DeWitt 5th edition
StefanBoltzmannConstant=5.670%10" —8; IV/(m"2«K"4), Incropera and DeWitt 5th
edition

%sutherland viscocity law constants, see reference in master thesis writeup
T0=273;

S=111;

mu0=1.716%x10" —5;

%define thermal conductivity of air as a function of temperature at atmospheric
%pressure (Incropera and DeWitt 5th edition table A.5

%K, W/ (mxK)

k. T=]
100,.00934
150,.0138
200,.0181
250,.0223
300,.0263

350,.0300
15

%preallocate for speed
SurfaceTemperature=zeros ((LastTimeStep—FirstTimeStep+1),(YBottomEdge—YTopEdge+1) , (
XRightEdge—XLeftEdge+1)) ;

%read in all data
for TimeStep=FirstTimeStep: LastTimeStep
load ([ RawExperimentalDataPath ,’/’  ExperimentalCaseNumber, ’/matlab/matlab_’
ExperimentalCaseNumber, '’ ;num2str(TimeStep),’ .MAT’|, ’—mat’);
eval ([ ’SurfaceTemperature (TimeStep ,: ,:) =(matlab_’ ,ExperimentalCaseNumber ,
,num?2str(TimeStep) ,’ ([YTopEdge: YBottomEdge] ,[ XLeftEdge : XRightEdge]) ); ’])

)

eval ([ ’clear .matlab’,ExperimentalCaseNumber, ’_’ ,num2str(TimeStep),’; ]);
end

%throw away data outside of the X/D range of interest so that it speeds
%up computation and also allows for proper averaging
FoundLeftEdge=0;
FoundRightEdge=0;
for LoopXLocation=1:(XRightEdge—XLeftEdge+1)
if X(LoopXLocation) /D>MinXD
if FoundLeftEdge==
if X(LoopXLocation) /D>MaxXD
if FoundRightEdge==0
FoundRightEdge=1;
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RightEdgeLocation=LoopXLocation %
edge of the domain of interest (has
nothing to do with alignment)

end
end
else
FoundLeftEdge=1;
LeftEdgeLocation=LoopXLocation %edge of the domain
of interest (has mothing to do with alignment)
end
end
end
X=X(LeftEdgeLocation: RightEdgeLocation);
SurfaceTemperature=SurfaceTemperature (:,:, LeftEdgeLocation: RightEdgeLocation);
Tfilm=(SurfaceTemperature+UpstreamAverageTemperature) /2; %film temperature on

the forced conwvection side

%calculate and print out wvalues for reference purposes

MaxSurfaceTemperature=max(max(max(SurfaceTemperature)))—273 %C
MinSurfaceTemperature=min(min(min(SurfaceTemperature)))—273 %C
ActualExperimentalRe Z%print the current Reynolds number

0707070, 070707070707070707070, 070707070707070707070 070707070707070707070,

%00000“000000000000000U0V0V000000000000000000000000000000000000000000000000

0T 6 e 6 et e 6 e e e e e e 6 e I e e e e i e e Ie e e e e Ie e e e e e e e Ie e i Ie e i e e Ie e o e e ie e i ie e e e e 76 e o6 %

%perform calculations related to natural convection losses

%note that correlations for laminar flow with uniform, constant surface temperature
are

%utilized . this is an approzimation but considered the best we can do.

%values for h are computed using the spanwise average surface

Z%temperature at each time. using this value of h calculated with the

%spanwise average surface temperature, the actual surface temperature

%is then used to calculate the convectiv heat loss as a function of

%position and time. it is a little messed up of an approach but mnot

%sure what else we can really do.

SpanAveragedSurfaceTemperatureTemporary=squeeze (mean( SurfaceTemperature ,2)); TK

YPositionNatural=zeros(size (SurfaceTemperature)); %preallocate for speed

SpanAveragedSurfaceTemperature=zeros (size (SurfaceTemperature)); %preallocate for
speed

for LoopYLocation=1:size (SurfaceTemperature ,2)

SpanAveragedSurfaceTemperature (:, LoopYLocation ,:)=

SpanAveragedSurfaceTemperatureTemporary ; %set all y values to the
spanwise average at each x location and at each time
YPositionNatural (: , LoopYLocation ,:)=Y(LoopYLocation )+abs (min(Y)) ; Zset

the y location at each xz value and at each time

end

TfilmNatural=(SpanAveragedSurfaceTemperature+AmbientTemperature) /2; %film

temperature on the mnatural convection side of the foil, K
beta=1./TfilmNatural; %expansion coefficient for an ideal gas, 1/K

DensityNatural=AtmosphericPressure./(R.* TfilmNatural) ;
%calculate thermal conductivity based upon the film temperature for the
%natural convection calculation. do a manual, linear interpolation between 350K and

300K
kNatural=((k-T(6,2)-k-T(5,2)) /(k-T(6,1)-k-T(5,1)))*(TfilmNatural-k_-T(6,1))+k-T(6,2);
alpha=kNatural./(DensityNatural*cp);
%calculate viscocity wusing sutherland wviscocity law
RelativeViscocityNatural=(TfilmNatural /T0)."(3/2) «(T0+S)./( TfilmNatural+S) ;
ViscocityNatural=muOx RelativeViscocityNatural;

nu=ViscocityNatural./DensityNatural;

Ra=(g+beta.xabs(SpanAveragedSurfaceTemperature—AmbientTemperature) .* YPositionNatural

147



133
134
135

136
137
138
139

140
141
142
143
144
145
146
147
148

149
150
151
152
153
154
155
156

157

158
159
160
161
162

163
164
165
166

167
168
169
170
171
172
173
174
175
176
177

178
179
180
181
182
183
184
185
186
187
188
189
190

."3)./(alpha.*nu);

if max(max(max(Ra)))>10"9
disp ( warning , .natural_convection_is_turbulent_and_correlations.don’’t_apply
")
pause
end

NuNatural=.387«Ra.".25; %bejan , convection heat transfer, third edition ,
page 198
hNatural=NuNatural.x kNatural./ YPositionNatural;

%because heat transfer coefficient at y=0 is infinity , just set it
%equal to the walue right after y=0
hNatural (: ,size (hNatural ,2) ,:)=hNatural (: ,size (hNatural ,2) —1,:);

LossesNatural=hNatural .*( SurfaceTemperature—AmbientTemperature) ;

clear hNatural NuNatural Ra nu ViscocityNatural RelativeViscocityNatural alpha
kNatural DensityNatural beta TfilmNatural %clear
up some memory

%end of mnatural convection loss calculations
T 66 a6 e e e e e e e e e e e e e e e e e e e e e e el 6 e e e e e e e I 6 e e i 6 e e Ko e e e e e e e e i 6 e e e 66 e e

T Te e et e e e e e e e e e e e e e e e e It e e i e e e e e e I e e I e e B ie e e e e It e e e ie e e e e ie v e e i e e e e ek

070707070;

0707070 0 0 0 0 070 0707070 0 0
Tt 6 66 e 6 a6 e e e e 6 e e e Ie e a6 e Ie e e Ie e Ie e e Ie e e e e Ie e i e e I e e e e Ve e e ie e o6 e e

%calculate values

RadiationLosses=FoilEmissivity .x StefanBoltzmannConstant .*( SurfaceTemperature. 4—
AmbientTemperature. 4); %W/m"2, radiationlosses

h=(FoilHeatFlux—RadiationLosses—LossesNatural)./(SurfaceTemperature—
UpstreamAverageTemperature) ;

%calculate and print out some wvalues for reference purposes

MaxNaturalLossPercent=max(max(max( LossesNatural)))/FoilHeatFlux*100

MeanNaturalLossPercent=mean(mean(mean( LossesNatural)))/FoilHeatFlux+100

MeanNaturalandRadiationLossPercent=mean(mean(mean( LossesNatural+RadiationLosses)))/
FoilHeatFlux+100

MaxRadiationLossPercent=max(max(max( RadiationLosses)))/FoilHeatFlux*100

MeanRadiationLossPercent=mean(mean(mean( RadiationLosses)))/FoilHeatFlux*100

clear RadiationLosses LossesNatural %clear up some
memory

%calculate thermal conductivity based upon the film temperature

%do a manual, linear interpolation between 350K and 300K
k=((k-T(6,2)-k-T(5,2))/(k-T(6,1)-k-T(5,1)))*(Tfilm—-k_-T(6,1))+k-T(6,2);
R %% T %%t his is mnot used because it is way too slow in MATLAB and maxz of Tfilm is
%% %%%%%%less than 350K anyway

Jok=zeros (size (Tfilm)); %preallocate for speed

%for looptime=1:size (Tfilm, 1)

% for loopY=1:size (Tfilm,62)

% for loopX=1:size (Tfilm,3)

% k(looptime ,loopY ,loopX )=interpl (k-T(:,1) ,k-T(:,2), Tfilm(
looptime ,loopY ,loopX));

% end

% end

%end

clear Tfilm RadiationLosses %clear up some memory

Nu=h*D. /k;

clear h %clear up some memory

TimeAverageNu=squeeze (mean(Nu) ) ;
SpanwiseTimeAverageNu=mean( TimeAverageNu) ;
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end

if (exist(’PlotResults’, ’var’)==1)&&(strcmp (PlotResults ,’yes’))
MinYD=MeasurementDomainHeight /2/D;
MaxYD=MeasurementDomainHeight /2/D;
[ContourFigure , ColorbarHandle]=PlotNuContour (TimeAverageNu,X,Y,D, TargetRe,
MinXD, MaxXD, MinYD, MaxYD, 0,100 ,20 , HoverD ) ;

%CurrentImage = getframe (ContourFigure);
%imwrite (CurrentImage . cdata, [EzperimentalCaseNumber, ’.png’]); %this
command doesn’t seem to work right when specifying the output resolution

%export as an eps image. for some reason it works okay with this contour
plot ... mot sure why I was having problems before.
hgexport (ContourFigure ,[ OutputImageFolder , ExperimentalCaseNumber,’.eps’]);
%this command doesn’t seem to work right when specifying
any other format than eps? also don’t remember why it worked better than
the print command?

disp(’.")

disp (’check._out_the_figure._and_press._any._key_to_continue’)
Fpause

close (ContourFigure)

if ((exist(’ReinSpanwiseTitle’,’var’))&&(strcmp(ReinSpanwiseTitle, 'yes’)))
&&((exist (’zOverDinSpanwiseTitle’, var’) )&&(strcmp (zOverDinSpanwiseTitle
yes)))
SpanwiseAverageTitleText=[’_—_Re=’,thousands(TargetRe),’ .—_z/D=",
num?2str (HoverD) |;
SpanwiseAverageLegendText=ExitConfiguration;
elseif ((exist(’zOverDinSpanwiseTitle’, var’))&&(strcmp (
zOverDinSpanwiseTitle , "yes’)))
SpanwiseAverageTitleText=["-—_z/D=" ,num2str(HoverD) |;
SpanwiseAverageLegendText=["Re=’,thousands(TargetRe) ];
else
SpanwiseAverageTitleText=[’_.—_.Re=",thousands(TargetRe) ];
SpanwiseAverageLegendText=["z/D=",num2str(HoverD) |;
end

[SpanwiseAverageFigure]=PlotNuSpanwiseAverage (SpanwiseTimeAverageNu ,X,D,
TargetRe ,MinXD ,MaxXD, Marker , SpanwiseAverageLegendText ,
SpanwiseAverageTitleText);
end

%calculate the overall averaged Nu for the specified domain

OverallAverageNu=mean(SpanwiseTimeAverageNu)

OveralAverageNuCorrelatedHistorical=OverallNuCorrelation (D,HoverD , mjets ,
ActualExperimentalRe , ExitConfiguration , ChannelWidth ,MinXD,MaxXD)

PercentDiffferenceOverallNu=(OverallAverageNu/OveralAverageNuCorrelatedHistorical —1)
x100

A.2.3 OverallNuCorrelation.m

function OveralAverageNuCorrelated=OverallNuCorrelation (D,HoverD, mjets ,Re, ExitConfiguration ,

ChannelWidth ,MinXD,MaxXD)

%try to calculate average heat transfer coefficient using corelations
%of Florschuetz et all, 1981

07070707070,

TR T Te e et e e e e e e e Ve e e e e 6% %

%text rig geometry that is fized unless the top plate is changed
NumberofColumns=5;

xnoverD =3;

ynoverD=3;

6070676907606 76 %6 %6767 060 7606 66 %6 6% 6% %

076060006 66 % 6% 60 76 e o6 e 6% 6% %
%run specific information
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end

%set weighting for the first column to be .5 if it is a line of symmetry
if strcmp(ExitConfiguration ,’Single_Exit’)

Weighting=[1,1,1,1,1,1,1,1];

InitialCrossFlowWeighting =1;

XValues=(MinXD+2) : 3: (MaxXD—2) ;

else
Weighting=[.5,1,1,1,1];
InitialCrossFlowWeighting=0;
XValues=0:3:(MaxXD—3) ;

end

mjet=mjets /55; %kg/s

NumberofRows=size (Weighting ,2) ;

0707070, 070707070,

I T 060 776760 660 6060 T 6 e e 66 e e 6% %
% correlation constants

CA=1.18;
nxA=—.944;
nyA=—.642;
nzA=.169;
Cm=.612;
nxm=.059;
nym=.032;
nzm=—.022;
CB=.437;
nxB=—-.095;
nyB=-.219;
nzB=.275;
Cn=.092;
nxn=—.005;
nyn=.599;
nzn=1.04;

A=CAx(xnoverD "nxA) x(ynoverD "nyA) x (HoverD "nzA)
m=Cmx (xnoverD "nxm) *(ynoverD “nym) * ( HoverD "nzm)
B=CBx*(xnoverD "nxB) % (ynoverD "nyB) * (HoverD "nzB)
n=Cnx* (xnoverD "nxn) *(ynoverD "nyn) % (HoverD "nzn)
%end correlation constants

TN T 6680 e e T 60608 e e i 606060606 %

)
)
i

)

TR T 60 Tt e e e e e e e Ve ie e e e 6% %
%other constants
Pr=.7;

I T 06 7076060 660 606 N6 e e 6 e 666 %

I T I6 606 R e T 66606 e e T 66066 %

%calculations

Anozzle=(D/2) "2xpi;

rhoVjet=mjet/Anozzle; %not sure if this is calculated
correctly according to the paper

Achannel=Ds«HoverD*ChannelWidth ;

rhoVchannel=cumsum(mjet«NumberofColumns*[InitialCrossFlowWeighting , Weighting (1:(
NumberofRows—1))]) /Achannel; %not sure if this is calculated correctly
according to the paper

AverageNu=AxRe 'm(1—Bx(HoverD*rhoVchannel/rhoVjet). n)*«Pr"(1/3);

%hold all
%bar (X Values, AverageNu, 1, ’FaceColor ’, 'none’, ’Line Width ’, 2)
OveralAverageNuCorrelated=sum(AverageNu.* Weighting) /sum( Weighting) ;

070707070707070707070,

T T6 a6 e e e eI e e e e e 66 % %
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A.2.4 CameraAlignment20100824.m

T 06 e a6 e e e 6 e e e e e e e e e e e e e e T e e e e e e e e e e e i i e e e e e e e e

%Camera Alignment

Fnote, this alignment process was performed by aligning to the nozzle plate
%surface , and then the top plate surface, and then interpolating the foil
Z%surface position based upon the spacer thickness. there may be some
%discrepancy in this interpolation process (it may mnot be linear), but the

45
46

© 00~ Ut WN -

%difference in alignment is not huge, so it is mot

%

%see the following spreadsheets for more information

% 2010.08.24 — alignment via hole pattern — final. zls
% 2010.08.24 — alignment of foil surface — final. xls

Z%width based upon the mominal/design hole patter dimensions

MeasurementDomainWidth=0.562%.0254%11; %n
MeasurementDomainHeight =0.562%.0254%5; %n

Z%mapping of the nozzle plate surface
XCenter=160; Zpizel

YCenter=108; Fpizel
NozzePlateLeftVerticalEdge =25;
NozzePlateBottomHorizontalEdge=169;

%mapping of the test section top/upper plate outer surface

TopPlateLeftVerticalEdge=15;
TopPlateBottomHorizontalEdge=174;

%actual measured thickness of the top plate (nmot the design thickness)

TopPlateThickness =.794%25.4; %rm

%taken from the mapping from the mnozzle plate surface to the top plate

%surface back to the foil surface

XLeftEdge=round (( NozzePlateLeftVerticalEdge—TopPlateLeftVerticalEdge) /(TopPlateThickness+

ActualH)*ActualH+TopPlateLeftVerticalEdge)

YBottomEdge=round (( NozzePlateBottomHorizontalEdge—TopPlateBottomHorizontalEdge) /(
TopPlateThickness+ActualH)xActualH+TopPlateBottomHorizontalEdge)

%assume the centering of the camera was correct
XRightEdge=XLeftEdge+(XCenter—XLeftEdge) %2
YTopEdge=YBottomEdge—(YBottomEdge—Y Center ) 2

%Interpolate all values based upon the mapping defined abolve
X=interpl ([ XLeftEdge , XCenter],[ — MeasurementDomainWidth /2 ,0] ,[ XLeftEdge: XRightEdge], ’linear ’,

‘extrap ') ;

Y=interpl ([ YBottomEdge, YCenter]|,[ — MeasurementDomainHeight /2 ,0] ,[ YTopEdge: YBottomEdge] , ’

s b b ? .
linear’, ’extrap’);
%end of camera alignment

T 66 e e 66 e 6 e e e e e e e e e e T e e e e 6 e e e e e e e I e e e I e e e o6 e

A.2.5 GenerateExperimentalNuAnimation.m

clc;

clear;

close all;
clear global

%add folder to the path where additional scripts are
addpath ../ ExperimentalDataCopy/impingement/analysis/

%define paths to read data from
BasePath="../../";
CaselListDataFile=’CaseList . txt ’;

ExperimentalData=’/Experimental /ExperimentalDataCopy/impingement/’;
RawExperimentalDataPath=[BasePath , ExperimentalData , ’/RawData/’ ] ;
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PathToCaseListDataFile=[BasePath , ExperimentalData, ’/analysis/’,CaseListDataFile];

606 06660 06 6 66 e 6 e T e e e ie e e I e J6 e e deo

6T 06 I 6 e e e 6 e I e Te e ie e e e e ie e e e e e
%define the current case
%CaseNumberSelected ="0022R/HD3E2H55"
%CaseNumberSelected="0029R15HD3E2H55
%CaseNumberSelected="0028R{HD3E1H55’

CaseNumberSelected="0028 R15HD3E1H55"’

HoverD=3; %need to hard code this in because never made ProcessDatausingPlotFunction return
HoverD

FramesPerSecond=500/11.42 %frames/second, need to hard code this in because it was
never recorded in the case list spreadsheet

T T T T e e e e e e e e Te e e e e e e e e e e e e e e e e e e e e e e e e e ie e e e e ie e e e ie v e e i e e e ie e e e e

OutputImageFolder=[BasePath,’/Experimental/post/’,CaseNumberSelected , ’—SurfaceNuTimeSteps/’

1;

[OverallAverageNu , TargetRe ,X,Y,D,MinXD,MaxXD, MeasurementDomainHeight , TimeAverageNu ,Nu]=
ProcessDatausingPlotFunction (CaseNumberSelected ,RawExperimentalDataPath ,
PathToCaseListDataFile, ’+’, 'no’);

mkdir ([ OutputImageFolder]) J%make the directory if it doesn’t already
exist

delete ([ OutputImageFolder, ' /*.x]) %delete any files that were in the directory, if it
already existed

for TimeStep=1:size (Nu,1)

[ContourFigure , ColorbarHandle]=PlotNuContour (squeeze (Nu(TimeStep ,: ,:) ) ,X,Y,D,
TargetRe ,MinXD,MaxXD,— MeasurementDomainHeight /2/D, MeasurementDomainHeight /2 /D
,0,100,20 ,HoverD, ’Nu’ ,(TimeStep —1)/FramesPerSecond) ;

CurrentImage = getframe(ContourFigure);

imwrite (CurrentImage.cdata, [OutputlmageFolder,’/’ CaseNumberSelected,’—’ , num2str(
TimeStep, %05.0f"),  .png’]); %this command doesn’t seem to work right when
specifying the output resolution

close (ContourFigure)

end

%first clear out an environmental variable matlab sets that messes this program up
LD_LIBRARY_PATH_ original=getenv ( 'LD_LIBRARY_PATH’ ) ;
setenv ( 'LD_LIBRARY PATH’ ,’ ) ;

%delete the wvideo if one has already been attempted for the same time steps
delete ([ OutputImageFolder,’/../’ ,CaseNumberSelected , "—SurfaceNu—1—" ,num2str( TimeStep) ,’ .mp4’

1)

delete ([ OutputImageFolder,’/../’ ,CaseNumberSelected , "—SurfaceNu—1—" ,num2str(TimeStep) ,’.mpg

1)

Imow generate a wvideo in two formats

eval ([ ’!ffmpeg.—r.’ ,num2str(FramesPerSecond ,3) ,’ .—sameq.—i.’,OutputlmageFolder,’/’,
CaseNumberSelected , ’=%05d . png’, =’ ,OutputImageFolder,’ /.. /> ,CaseNumberSelected , '—
SurfaceNu—1—’ ,num2str( TimeStep) ,’ .mp4d’])

eval ([’ ! ffmpeg._—r.’ ,num2str(FramesPerSecond,3) ,’ .—sameq.—i.’,OutputImageFolder,’/’,
CaseNumberSelected , "=%05d .png’, =’ ,OutputImageFolder,’ /../’ ,CaseNumberSelected , '—
SurfaceNu—1—’ ,num?2str( TimeStep ), ’ .mpg’])

)

Inow change the environmental variable back
setenv ( 'LD_.LIBRARY PATH’ ,LD_LIBRARY_PATH original)
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A.3 CFD Preprocessing Scripts
A.3.1 BatchWriter.m

clc;

clear all;
clear global;
close all;

CFDCase="CFDO0059’

BasePath="../../";

RawMeshes="RawMeshes ’ ;

RawMacros=’RawMacros’

ExperimentalData="/Experimental /ExperimentalDataCopy/impingement/’
CaseListDataFile=’CaseList.txt’;

CFDCases='Completed CFDCases ’ ;
OutputFolder="local_workspace’;
UploadFolder="hawk_archive_SmallFiles —outbox’

%general paths

PathToRawMeshes=[BasePath ,RawMeshes, '/ Serial/’|;
PathToRawMacros=[BasePath ,RawMacros, '/’ ];
PathToOutputFolder=[BasePath, OutputFolder YA
PathToUploadFolder=[BasePath , UploadFolder,’/’|;
RawExperimentalDataPath=[BasePath , ExperimentalData , ’/RawData/’|;

PathToCaseListDataFile=[BasePath , ExperimentalData, ’/analysis/’,CaseListDataFile];

%begin generic code
PathToWorkingDirectory=[PathToOutputFolder ,CFDCase, '/’ |;
if exist(PathToWorkingDirectory, ’dir’)==T7

disp(’folder_already._exists._and_you_requested_to_start_a_.new.case_delete_or_rename.

case_first’)

break
else
mkdir (PathToWorkingDirectory)
mkdir ([ PathToWorkingDirectory , ’/output/images/Residuals/’])
%note: the rest of the image folders are generated below when the macro script
written
mkdir ([ PathToWorkingDirectory , ’/output/csv/’])
mkdir ([ PathToWorkingDirectory , ’/output/cas—dat/’])
mkdir ([ PathToWorkingDirectory , ’/output/status/’])
mkdir ([ PathToWorkingDirectory ,’/input/’])
mkdir ([ PathToWorkingDirectory , ’/post/’])
end
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%include some code that reads in data from spreadsheets

addpath /home/andy/Desktop/CFD/CFDScripts/ %this is used because the run command
changes the path and messes all other paths defined up

addpath /home/andy/Desktop/CFD/Experimental/ExperimentalDataCopy/impingement/analysis/

addpath /home/andy/Desktop/CFD/Experimental/scripts/

ReadCFDCaseListSpreadsheet %note: can’t put a .m on the end of the sript name because
it thinks the . is an operator or something

ReadExperimentalCaseListSpreadsheet

eval ([ ’!cp../BatchWriter .m_.’ ,PathToWorkingDirectory ,’/input/’])
eval ([ ’!cp.’,PathToCFDCaseListDataFilePrefix ,’.+.’ ,PathToWorkingDirectory,’/input/’])

TR e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 6 e e e e e e e T e e e i e e e e I 6 e e e e e e e i e e e e e e e e e
%generate journal file
journalfile=fopen ([ PathToWorkingDirectory , ’/input/journalfileMATLAB .jou’],’w’);

Z%print out the date and time for reference
fprintf(journalfile ,[’!date’,char(10)]);

Zprint out bandwidth information for reference
fprintf(journalfile ,[’/parallel/bandwidth’,char(10)]);

Z%set settings that have to be set every time fluent is launched
fprintf(journalfile ,[’/display/set/windows/text/company._no’,char(10)]);
fprintf(journalfile ,[ ’/display/set/colors/color—scheme_classic’,char(10)]);

reply = input(’Start_running._in_Fluent.(1)_locally_inside_of MATLAB_or._generate_a_batch.
submission_script.for_hawk.(2)?[2]:.", ’s’);

if isempty(reply)
reply = 27

end

%if running on hawk, start writing the batch script
if strcmp(reply,’1’)==0
T Te 60 e 6 e e e e e T e e e e e e e e 6 e e e e e e e e e T e e e e e e e ie e e I e e e e e e Te e e e I e e Ve ie e e ie e e e ie s
%generate batch script for submitting job to DSRC
BatchScriptFile=fopen ([ PathToWorkingDirectory ,’/input/’ ,CFDCase, ' . BatchSubmission’],

RADN

fprintf(BatchScriptFile ,[ '#!/bin/csh.—x’,char (10)]);
fprintf(BatchScriptFile ,[ #PBS_.—1_job_type=""MPI’’’ char (10)]);

%this is a really stupid thing to have to do but no shell wvariables work for these
parameters

fprintf(BatchScriptFile ,[ '#PBS_.—o_hawk—0:andy/BatchScriptStandardErrorAndOutput/’,
CFDCase, ’ . StandardOut ’ ,char (10) ]) ;

fprintf(BatchScriptFile ,[ '#BS.—e_hawk—0:andy/BatchScriptStandardErrorAndOutput/’,
CFDCase, ’. StandardError > ,char (10)]) ;

fprintf(BatchScriptFile ,[ '#PBS_-—A_WPFAFPRW29132P33’ ,char (10) ]) ;

fprintf(BatchScriptFile ,[ '#PBS_.—m_abe’ ,char(10)]) ;
fprintf(BatchScriptFile ,[ "#PBS_.-M_andy@schroder.net’,char (10)]) ;

fclose (BatchScriptFile);

eval ([ ’!cp.’,PathToWorkingDirectory, ’/input/’ ,CFDCase, ’. BatchSubmission.’,
PathToWorkingDirectory , ’/input/’ ,CFDCase, ' . DebugBatchSubmission’]) ;

BatchScriptFile=fopen ([ PathToWorkingDirectory ,’/input/’ ,CFDCase, ' . BatchSubmission’],
7a’);
fprintf(BatchScriptFile ,[ #PBS_-—N_aus’ ,CFDCase, char (10)]) ;
fprintf(BatchScriptFile ,[ '#BS.—1.select=ncpus=’,num2str (NumberofCPUs+2) ,char (10)]) ;
fprintf(BatchScriptFile ,[ '#PBS_.—1_fluent=",num2str (NumberofCPUs) ,char (10)]) ;
fprintf(BatchScriptFile ,[ '#PBS.—1_.walltime=",WallTime, char (10)]) ;
(

fprintf(BatchScriptFile ,[ #PBS_.—q.regular’,char(10)]) ;

fprintf(BatchScriptFile ,[ ’set _FluentCPUs=" ,num2str (NumberofCPUs) ,char (10)]) ; %
this is hoaky but makes the creation of two similiar batch scripts easier
fprintf(BatchScriptFile ,[ set _ExtraText=""",char (10)]) ;
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fclose (BatchScriptFile);

BatchScriptFileDebug=fopen ([ PathToWorkingDirectory, ’/input/’ ,CFDCase, ’.
DebugBatchSubmission’], ’a’);
fprintf(BatchScriptFileDebug ,[ '#PBS_.—N_dbg’ ,CFDCase, char (10)]) ;
fprintf(BatchScriptFileDebug ,[ '#PBS_.—1_select=ncpus=22’ ,char (10)]) ;
fprintf(BatchScriptFileDebug ,[ '#PBS_.—1._fluent=21",char (10)]);
fprintf(BatchScriptFileDebug ,[ '#PBS_—1_walltime=50:00",char (10)]) ;
fprintf(BatchScriptFileDebug ,[ '#PBS_.—q.debug’,char (10)]) ;
7[

fprintf(BatchScriptFileDebug ,[ >set FluentCPUs=20",char (10)]) ; %this is hoaky but
makes the creation of two similiar batch scripts easier
fprintf(BatchScriptFileDebug ,[ 'set .ExtraText="Debug—"",char (10)]) ;

fclose (BatchScriptFileDebug);

PartialBatchScriptFile=fopen ([ PathToWorkingDirectory, ’/input/’ ,CFDCase, ’.
PartialBatchSubmission’], ’'w’);

fprintf(PartialBatchScriptFile ,[ ’echo.”starting.’ ,CFDCase, ’”|.mail_—s.” starting.’,
CFDCase, ' .—_3ExtraText$PBS_JOBID” _andy@schroder.net’ ,char (10)]) ;
fprintf(PartialBatchScriptFile ,[ "'module_load .CFD/fluent12.1.2 "’ ,char(10)]); Znot
sure if this does anything but terry says to try it anyway
fprintf(PartialBatchScriptFile ,[ ’limit._stacksize_unlimited’,char(10)]); %not sure if
this does anything but terry says to try it anyway
fprintf(PartialBatchScriptFile ,[ 'mkdir .—p_$WORKDIR/’ ,CFDCase, ’/output ’,char (10)]) ;
%tag on the output so that the standard output file can actually be written
somewhere.
fprintf(PartialBatchScriptFile ,[ ’cd $WORKDIR/’ ,CFDCase, char (10)]) ;
fprintf(PartialBatchScriptFile ,[ "date_.>>&”./output/’ ,CFDCase, '—$ExtraText$PBS_JOBID.
FluentStandardOutput” ’,char (10)]) ;
fprintf(PartialBatchScriptFile ,[ ’/usr/bin/rcp.—r.${msas}:inbox/SmallFiles/’ ,CFDCase,
’.input. tar SWORKDIR.>>&”./output/’ ,CFDCase, '—$ExtraText$PBS_JOBID .
FluentStandardOutput” ’,char (10)]) ;
fprintf(PartialBatchScriptFile ,[ ’tar .—C_§WORKDIR.—xf_$WORKDIR/’ ,CFDCase, ’.input .
tar.>>&”./output/’ ,CFDCase, '—$ExtraText$PBS_JOBID . FluentStandardOutput” > ,char
(10)])

end

Inow see how to copy files.

Fnote, don’t think this section can’t be combined with if strcmp(CFDCaseToContinue, 'N/A’)
statements below because wanted to write the batch submission script at the same time as
copying files

%(just to keep things together) and don’t always mneed to copy files so if you are going to
do both at the same time so if you are going to do it together then do it before
starting to write the

%journal file

if (stremp(reply,’1l’))&&(stremp(CFDCaseToContinue, 'N/A’)==0)

%if not a starting from a fresh mesh and running locally or files are mo longer on
the hawk workspace then do a local copy and upload manually

eval ([ ’!cp.’,CFDCaseToContinuePathOutputData, ’/output/cas—dat/’ ,DataFileName, .7,
PathToWorkingDirectory , ’/input/’]);

eval ([ ’!cp.’,CFDCaseToContinuePathOutputData, ’/output/cas—dat/’,CaseFileName, '_’,
PathToWorkingDirectory , ’/input/’]);

eval ([’!cp.’,CFDCaseToContinuePathSmallFiles,’/input /*.macro.’,
PathToWorkingDirectory ,’/input/’]) ;

eval ([’!epo—r.’,CFDCaseToContinuePathSmallFiles,’/output/images.’,
PathToWorkingDirectory , ’/output/’]) ;

eval ([’!epo—r.’,CFDCaseToContinuePathSmallFiles,’/output/csv.’,
PathToWorkingDirectory , ’/output/’]) ;

eval ([’!cpo—r.’,CFDCaseToContinuePathSmallFiles, ’/output/status.’,
PathToWorkingDirectory , ’/output/’]) ;

elseif (strcmp(CFDCaseToContinue, 'N/A’)==0)

%if mot starting from a fresh mesh and files are on hawk workspace and mnot running
locally
%copy the required files wusing the batch script

fprintf(journalfile ,[’!/usr/bin/rcp.—r._${msas}: CompletedCFDCases/SmallFiles/’,

CFDCaseToContinue, ’. tar SWORKDIR’ ,char (10)]) ;% >>&"./output/’, CFDCase, ’—
$EztraText$PBS_JOBID. FluentStandardOutput”’, char (10)]) ;
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fprintf(journalfile ,[ ’! tar .—C_$WORKDIR_.—xf_$WORKDIR/’ ,CFDCaseToContinue, ’. tar’,
char (10)]) ;% >>6"./output/’, CFDCase,’— $ExtraText$ PBS_JOBID . FluentStandardOutput
77, char(10)]) ;

fprintf(journalfile ,[’!/usr/bin/rcp_—r_${msas }: Completed CFDCases/OutputData/’,
CFDCaseToContinue, ' /output /cas—dat/’,CaseFileName, ’_./input/’,char(10)]) ;%
>>6". /output /’,CFDCase,’— $ExtraText$ PBS_JOBID . FluentStandardOutput”’, char (10)]) ;

fprintf(journalfile ,[’!/usr/bin/rcp._—r._${msas}: Completed CFDCases/OutputData/’,
CFDCaseToContinue, ' /output /cas—dat/’ ,DataFileName, ’../input/’,char(10)]) ;%
>>67. /output /’, CFDCase, ’— $ExtraText$ PBS_JOBID . FluentStandardOutput”’, char (10)]) ;

fprintf(journalfile ,[’!cp_$WORKDIR/’ ,CFDCaseToContinue, ’/input /*.macro../input/’,
char (10)]) ;% >>&"./output /’, CFDCase, ’— $ExtraText$ PBS_JOBID . FluentStandardOutput
», char (10)]) ;

fprintf(journalfile ,[ ’!cp.—r .$WORKDIR/’ ,CFDCaseToContinue, ’/output/images../output/
’,char (10)]) ;% >>6”./output/’,CFDCase,’— $ExtraText$ PBS_JOBID .
FluentStandardOutput”’, char (10)]) ;

fprintf(journalfile ,[’!cp.—r . $WORKDIR/’ ,CFDCaseToContinue, ’/output/csv../output/’,
char (10)]) ;% >>&”./output /’, CFDCase, ’— $ExtraText$ PBS_JOBID . FluentStandardOutput
», char (10)])

fprintf(journalfile ,[ ’!rm_—r .$WORKDIR/’ ,CFDCaseToContinue, char (10)]) ; %>>6&"./output
/’,CFDCase,’— $ExtraText$PBS_JOBID . FluentStandardOutput”’, char (10)]) ;

%print out the date and time for reference

fprintf(journalfile ,[ ’!date’,char(10)]);

eval ([’!ep.—r.’,CFDCaseToContinuePathSmallFiles,’/output/status.’,
PathToWorkingDirectory , ’/output/’]) ;

elseif (stremp(reply,’1’))

%if running locally and a mew mesh, get it out of the local mesh folder

%copy some files

eval ([ ’!cp.’ ,PathToRawMeshes, '/’ ,CaseFileName, ’/’ ,CaseFileName, ’.cas.’,
PathToWorkingDirectory,’/input/’]) %add .cas for file copy since
it ism 't included in the wvariable for new meshes

%only do this for running locally since on hawk need to do as a two step process
because of the license server being stupid
WriteMultiCoreMesh=fopen ([ PathToWorkingDirectory , ’/input /WriteMultiCoreMesh . jou’], 'w
)
fprintf(WriteMultiCoreMesh ,[ '/ file /read—case../input/’,CaseFileName, char (10)]) ;
%see comment
about no .cas in this wvariable for new meshes
%convert the foil to a solid, even though this was already defined as solid in
pointwise. for simulations run on hawk,
%this is dome with the make parallel mesh script because need to know the boundary
names in order to run. when running locally ,
%need to just cancel the script after the first run and then reupdate the
spreadsheet with the correct boundary names, then run again.
if strcmp(WallConduction, 'yes’)
fprintf(WriteMultiCoreMesh ,[ ’/define /boundary—conditions /modify—zones/zone—
type_foil_solid’,char(10)]);
end
fprintf(WriteMultiCoreMesh ,[ ’/file /write—case../input/’ ,CaseFileName, ’_yes’,char(10)
s
fprintf(WriteMultiCoreMesh ,[ exit ’,char (10)]);
fclose (WriteMultiCoreMesh) ;

else
%if running on hawk and a new mesh, get it out of the archives
fprintf(journalfile ,[’!/usr/bin/rcp.—r.${msas}: RawMeshes/Parallel/’ 6 CaseFileName, ’/’
,CaseFileName, ’.cas../input/’,char(10)]) ;% >>&"./output/’, CFDCase, '—
$EztraText$PBS_JOBID. FluentStandardOutput” ’, char (10)]) ;
end
disp (' If_you_want.to_.manually .remove_any.status.files _now_.to_force_restarting.at’);

(
disp(’earlier _point_in_the_simulation ,_do_that_now_and_then_press._any._key_to_continue’);
(7

disp(’if_doing._this._make_.sure_to_delete _any_images._or_.csv.files._generated..csv_files_will’);

disp ( 'be_appended._to_and_images_maybe_will _not_be_overwritten?,_so_things_will_turn_out_very
oweird ’);

disp (’press._any._key_to_continue’);

pause
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Inow finish writing the batch script if running on hawk
if strcmp(reply,’1’)==0
fprintf(journalfile ,[ ’!date’,char(10)]);% >>&"./output/’, CFDCase, ’—
$EzxtraTert$PBS_JOBID. FluentStandardOutput” ’, char (10)]) ;

%now doing this separately and mot automatically because the license server 1is
stupid .

%if strcmp (CFDCaseToContinue, 'N/A’) %if this is a raw mesh then you need to also
read in the mesh and resave it because of a multi—cpu bug with fluent or
pointwise.

% fprintf(journalfile ,[’! fluent 3ddp —gu —driver null —i ./input/
WriteMultiCoreMesh . jou ’, char (10)]);% >>&"./output/’, CFDCase, ’—
$EztraText$PBS_JOBID. FluentStandardOutput” ’, char (10)]) ;

%end

fprintf(PartialBatchScriptFile ,[ 'fluent _—paltix .—mpi=sgi.3ddp.—gu.—t_$FluentCPUs._—
driver.null.—i../input/journalfileMATLAB.jou.>>&”./output/’ ,CFDCase, '—
$ExtraText$PBS_JOBID . FluentStandardOutput”’ ,char (10)]) ;

fprintf(PartialBatchScriptFile ,[ 'cat.”./output/’ ,CFDCase, '—$ExtraText$PBS_JOBID.
FluentStandardOutput” | _-mail.—s_” complete.’ ,CFDCase, ’.—_$ExtraText$PBS_JOBID” _
andy@schroder.net ’,char (10)]) ;

fclose(PartialBatchScriptFile);

eval ([ ’!cat_’,PathToWorkingDirectory,’/input/’ ,CFDCase, ’. PartialBatchSubmission>>",
PathToWorkingDirectory , ’/input/’ ,CFDCase, ' . DebugBatchSubmission’]) ;

eval ([ ’!cat_’,PathToWorkingDirectory,’/input/’ ,CFDCase, ’. PartialBatchSubmission>>",
PathToWorkingDirectory, ’/input/’ ,CFDCase, ’. BatchSubmission’]) ;

eval ([ ’!rm.’ ,PathToWorkingDirectory, ’/input/’ ,CFDCase, ’. PartialBatchSubmission’]) ;

end

%read in necessary files

fprintf(journalfile ,[’/file /read—case../input/’,CaseFileName, char(10)]);

Z%note for the new mesh the .cas was not included in the CaseFileName variable because
variable is meeded to reference the file and folder.

%fluent automatically appends this if not present

fprintf(journalfile ,[’/file /read—macros../input/save_figures.macro’,char(10)]);
fprintf(journalfile ,[’/file /read—macros../input/save_residuals.macro’,char(10)]);
fprintf(journalfile ,[’/file /read—macros../input/save_current_residuals.macro’,char(10)]);
if strcmp(CFDCaseToContinue, 'N/A”) %setup the case from a raw mesh exported from

pointwise .

ReadLabViewData %include some code that reads labview data and calculates a
few derived quantities

minlet=mjets /55« NumberofHolesinMesh ;

ApproximatelnletDensity=AtmosphericPressure /(287.058+ UpstreamAverageTemperature) ;

ApproximatelnletVelocity=(mjets/55) /( ApproximateInletDensity*pix(D/2)"2)

%convert values to meters and into a string

Z%num2str seems to add a lot of extra spaces when it converts the vector to a string
but fluent doesn’t seem to have a problem with it.

%need to have 10 digits of precision so the line coordinates don’t get rounded to a
value outside of the meshes actual domain limits

LinePlotCoordinatesStart=num2str(LinePlotCoordinatesStart /1000,20) ;

LinePlotCoordinatesStop=num2str(LinePlotCoordinatesStop /1000,20) ;

%copy macros out of the raw macros folder
eval ([ ’!cp.’,PathToRawMacros, **.’ ,PathToWorkingDirectory , ’/input/’])

%add any other lines or surfaces to the mesh or do any other modifications on the
mesh

%convert from mm to m

fprintf(journalfile ,[’/mesh/scale_..001..001..001",char(10)]);

%add line

fprintf(journalfile ,[ ’/surface/line—surface_radial—linel.’ ,LinePlotCoordinatesStart
’.’,LinePlotCoordinatesStop ,char (10)]) ;

157



251
252

253
254
255
256
257
258
259
260

261

262

263

264

265

266
267

268
269
270
271
272
273
274

275

276

277

278

279
280

281
282
283
284
285
286
287
288
289
290
291

292
293

%don’t think this is mecessary since can’t export in parallel mode, so might as well
just do it during post processing.

%add a plane through the center for exporting data from

%fprintf(journalfile ,[’/surface/plane CenterPlane 0 0 0 0 1 1 0 —1 1’,char(10)]);

%set some solver settings

fprintf(journalfile ,[’/define/models/viscous /kw—standard._yes’  char(10)]);

fprintf(journalfile ,[’/define/models/viscous /kw—shear—correction.yes’,char(10)]);

fprintf(journalfile ,[ ’/report/reference—values/length_.005",char(10)]);

%reduce the wunder relazation factors so that the solution won’t blow up when started
and

%so that the residuals are reduced. reducing under relazation factors doesn’t change
a steady solution

%it just helps to stabilize it while slowing the convergence process. if a solution
is steady and has some numerical instability then the residuals will go down

%if the solution is wunsteady, the residuals will go down because the reduced wunder
relazation factors mot only stabilize the numerical

Z%instabilities but also dampen out the true unsteadyness, causing the residuals to
go down.

%because just trying to get a good imitial condition for the time accurate unsteady
simulation , it is okay to reduce these

%values even though it is actually damping the unsteadiness.

%also mote that even though the convergence process is slowed, it it stabilizes it,
it does actually help it to converge faster as long as it is not

%overly under relazed.

fprintf(journalfile ,[’/solve/set/under—relaxation/turb—viscosity..9’,char(10)]);

% set residual settings
fprintf(journalfile ,[’/solve/monitors/residual/plot.yes’,char(10)]);
fprintf(journalfile ,[ ’/solve/monitors/residual/print_yes’,char(10)]);

fprintf(journalfile ,[’/solve/monitors/residual/check—convergence_yes_.yes.yes._yes._yes
—~yes’,char(10)]);
fprintf(journalfile ,[’/solve/monitors/residual/convergence—criteria.le—06.1le—06._1le

—06_.1e—06_-1e—06_1e—06" ,char (10)]) ;

fprintf(journalfile ,[’/solve/monitors/residual /n—save_10000’,char(10)]) ;

%note , after the buffer is filled , fluent throws 1/2 of all the points away and then
starts recordign again, so this isn’t the real z axzis range but rather the
number of points in the x axis that are stored

fprintf(journalfile ,[ ’/solve/monitors/residual /n—display.5000’,char(10)]) ; %
only plot the last 5000 iterations. this doesn’t really control the z axzis very
well but at least it limits it somewhat.

fprintf(journalfile ,[’/solve/monitors/residual/scale—by—coefficient_yes’,char(10)]);

%fprintf(journalfile ,[’/plot/residuals—set/auto—scale yes no —8 0’,char(10)]); %
keep the scale the same so each image can be looked al in succession
meaningfully .... fluent lies and doesn’t tell you it wants the exponent of 10,
also, this line was moved to the macro files because it mneeds to be done
everytime if not autoscalling and also ploting the radial line plots

%note the following commands will give a invalid command yes error wuntil the energy
equation 1s turned on

fprintf(journalfile ,[ ’/solve/execute—commands/add—edit _residuals_.1000." iteration”.”
save_residuals_to_png”’,char(10)]);

fprintf(journalfile ,[ ’/solve/execute—commands/add—edit _currentresiduals_10.”
iteration”.”save_current_residuals_to_png”’,char(10)]);

%set the gauge pressure
fprintf(journalfile ,[’/define/operating—conditions/operating—pressure.
AtmosphericPressure) ,char(10)]) ;

> snum2str (

%set boundary conditions

%inlet — mass flow inlet

fprintf(journalfile ,[’/define/boundary—conditions/zone—type.’,6InletZone , ’ _mass—flow—
inlet’,char(10)]);

fprintf(journalfile ,[’/define/boundary—conditions/mass—flow—inlet.’,InletZone , _yes.

yes.no.’ ,num2str(minlet),’_-no_0_no_yes_no_no.no_yes.’ ,num2str(
InletTurbulentIntensity),’.’ ,num2str (D) ,char(10)]);

Z%boundary conditions for a pressure inlet (not yet tested thoroughly) and still need
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to define GageTotalPressure

%fprintf(journalfile ,[’/define/boundary—conditions/zone—type ’,InletZone,’ pressure—
inlet 7, char(10)]) ;

%fprintf(journalfile ,[’/define/boundary—conditions/pressure—inlet ’,InletZone,’ yes
no ’,num2str( GageTotalPressure),’ no 0 no yes no mo no yes ,num2str(
InletTurbulentIntensity),’ ’,num2str(D),char(10)]);

%repeating boundary
if 1"=strcmp(FirstRepeatingBoundary ,’’)

fprintf(journalfile ,[’/mesh/modify—zones/make—periodic.’,
FirstRepeatingBoundary ,’.’,SecondRepeatingBoundary , ’.no.yes.yes’,char
(10) 1) ;

end
%note , the heat surface is turned on later after the flow develops a little

%initialize the flow field

fprintf(journalfile ,[ ’/solve/initialize/initialize —flow’,char(10)]);

fprintf(journalfile ,[’/solve/set/reporting—interval.10’,char(10)]);

%fprintf(journalfile ,[’/solve/patch ’,JetCore,’ () z—velocity yes —’',num2str(
ApprozimatelnletVelocity),char(10)]) ; %did a test and it actually converges
slower with this defined.

%set image file export settings
fprintf(journalfile ,[ ’/display/set/picture/driver/png’,char(10)]);
fprintf(journalfile ,[’/display/set/picture/x—resolution /1500’ ,char(10)]);
fprintf(journalfile ,[ ’/display/set/picture/y—resolution /1000’ ,char(10)]);
fprintf(journalfile ,[’/display/set/picture/color—mode/color’,char(10)]);

%first do some iterations without any heating so that the flow can develope.
otherwise , the energy equation may diverge,

%just as the test rig will burn up the foil if you turn the air and the heat on at
the same time.

%also create a status file so know what is going on

fprintf(journalfile ,[ ’!touch../output/status/InitalizingFlowWithNoHeat.status’, char
(10) 1)

fprintf(journalfile ,[’/solve/iterate.’ ,NoEnergylterations,’ _yes_yes_yes’,char(10)]);
%extra yes gives error if not appending but its okay.

%turn on the energy equation and change to an ideal gas model

fprintf(journalfile ,[’/define/models/energy_yes_no_no_no.yes’ ,char(10)]);

fprintf(journalfile ,[’/define/materials/change—create_air_air_yes.ideal —gas.no.no.no
—no.no.no’,char(10)]);

fprintf(journalfile ,[’/define/models/viscous /kw—compressibility .yes’,char(10)]);

%change the wunder relazation factor for the energy equation

fprintf(journalfile ,[’/solve/set/under—relaxation/temperature..5’ ,char(10)]); %. 9
seems to work but .3 seems to do better convergence with a first order solution
because it helps stabilize it. wusing .5 as a balance. may want to change this on
unsteady solutions.

Y%now define the heater boundary condition

if stremp(WallConduction, 'yes’)

%define the stainless steel material. fluent is stupid and it only lets you
create a new material by first copying an old material and then changing
everything

%all properties are assumed constant and may not actually be the same allow
as we used in the experiment

Z%properties are taken from MATWEB for T 800 Series Stainless steel. Average
values were used.

%foil is modeled directly rather than wusing the simpler wall thickness
option in fluent, because want 3D conduction rather than 1D conduction.

fprintf(journalfile ,[’/define/materials/change—create_aluminum._stainless —
steel_yes_constant._7840_yes_constant._.498_yes_constant.15.2_no’,char(10)
1)

%define the volumetric heat generation. not sure what the final parameter 7

159



339
340
341
342

343

344

345

346

347
348
349
350
351

352

353

354

355
356
357

358
359
360
361

362

363

364

365
366
367

368
369
370

371
372
373
374

375

deactivate thread” is, so leave it as the default of "no”

%right now the thickness of the foil is hardcoded in. probably should start
loging this in the CaseList.xzls spreadsheet.

%assumes thickness of the foil is uniform

fprintf(journalfile ,[ ’/define/boundary—conditions/solid._foil_yes_stainless—
steel_yes_l.yes.’ ,num2str(FoilHeatFlux /(.0015%.0254)), cno_.yes.0.0.0.0.0
~l.no’,char(10)]);

else
fprintf(journalfile ,[’/define/boundary—conditions/zone—type.’,
HeatedSurfaceZonel ,’_-wall’,char(10)]);
fprintf(journalfile ,[’/define/boundary—conditions/wall.’ ,HeatedSurfaceZonel ,
’_.0_no_0O.no._no_no.’ ,num2str( FoilHeatFlux),’_-no_no_.no.no.0.no..5’,char
(10)]) ;
fprintf(journalfile ,[’/define/boundary—conditions/zone—type.’,
HeatedSurfaceZone2 ,’_wall’, char(10)]);
fprintf(journalfile ,[’/define/boundary—conditions/wall.’ ,HeatedSurfaceZone2 ,
’_.0_no_0O.no_no_no.’ ,num2str( FoilHeatFlux),’_-no_no_.no.no.0.no..5’,char
(10)]) ;
end

Y%now define the inlet temperature

%mass flow inlet

fprintf(journalfile ,[’/define/boundary—conditions/mass—flow—inlet.’,InletZone, _yes.
yes.no.’ ,num2str(minlet),’_-no.’ ,num2str(UpstreamAverageTemperature),’.no_-0_no.
yes.no_no.no.yes.’ ,num2str(InletTurbulentIntensity),’.’ ,num2str(D),char(10)]);

%boundary conditions for a pressure inlet (not yet tested thoroughly) and still need
to define GageTotalPressure

%fprintf(journalfile ,[’/define/boundary—conditions/pressure—inlet ’,InletZone,’ yes
no ’,num2str(GageTotalPressure),’ no ’,num2str(UpstreamAverageTemperature),’ no

0 no yes no no no yes ’,num2str(InletTurbulentIntensity),’ ’,num2str(D),char(10)

1)

Inow adjust the residual settings for the energy equation

fprintf(journalfile ,[’/solve/monitors/residual/check—convergence_yes_yes_yes_yes_yes
.yes.yes’ ,char(10)]);
fprintf(journalfile ,[ ’/solve/monitors/residual/convergence—criteria._le—06_1le—06_1e

—06-1e—06_-1e—06_-1e—06_-1e—06" ,char (10)]) ;

Inow set surface monitor settings
%need to make sure you have an extra yes command for each after the iterate commands
to allow for appending if the case is continued.

fprintf(journalfile ,[ ’/solve/monitors/surface/set—monitor.
Average_Surface_Temperature.” Area—Weighted _Average” _temperature.’,
HeatedSurfaceZonel ,’.’ ,HeatedSurfaceZone2 ,’_().-no.yes_yes.”./output/csv/
AverageSurfaceTemperature.csv” .1’ ,char(10)]) ;

fprintf(journalfile ,[ ’/solve/monitors/surface/set—monitor_Average_-Nusselt_Number.”
Area—Weighted _Average” .nusselt —number.’ ,HeatedSurfaceZonel ,’ .’ ,
HeatedSurfaceZone2 ,’_()_-no_yes_yes.”./output/csv/AverageNusseltNumber.csv”_1",
char (10)]);

fprintf(journalfile ,[’/solve/monitors/surface/set—monitor_Vertex_Max_Temperature.”
Vertex _Maximum” _temperature.’,HeatedSurfaceZonel ,’.’ ,HeatedSurfaceZone2,’_().no.
yves_yes.”./output/csv/VertexMaximumSurfaceTemperature.csv” .1’ ,char(10)]);

%auto save the figures to a file
fprintf(journalfile ,[ ’/solve/execute—commands/add—edit .savefigures._10." iteration”.”
save_figures_to_png”’,char(10)]);

%configure auto save of data file

fprintf(journalfile ,[’/file /auto—save/case—frequency_if —mesh—is —modified ’,char (10)])
; %this still seems to save one copy and i am not sure why.

fprintf(journalfile ,[’/file /auto—save/data—frequency.100’,char(10)]);

fprintf(journalfile ,[’/file /auto—save/retain —most—recent—files_yes’,char(10)]);

fprintf(journalfile ,[’/file /auto—save/max—files .2’ ,char(10)]);

fprintf(journalfile ,[’/file /auto—save/root—name../output/cas—dat/’ ,CFDCase, char (10)
s

fprintf(journalfile ,[’/file /data—file —options_nusselt —number_heat—transfer —coef._
velocity —magnitude_vorticity —mag. ()’ ,char (10)]); %must be after data is
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initialized ?

Z%print out a summary
fprintf(journalfile ,[’/report/summary_yes../output/’ ,CFDCase, ’—~InputSummary . txt ’,
char(10)]);

%save the case that was just configured
fprintf(journalfile ,[’/file/write—case../output/cas—dat/’ ,CFDCase, ’.cas’,char(10)]);
fprintf(journalfile ,[’/file /write—data../output/cas—dat/’ ,CFDCase, ’.dat’,char(10)]);

%create a status file so know where to restart the case at
fprintf(journalfile ,[ ’!touch../output/status/CaseSetup.status’,char(10)]);

99000000000000000000000000000000000000000000000000000000000000000000000%

T 6 a6 e e e e e e e e e e 6 e e e e e e e e 6 e e T e e e e e e e e e e e e e 6 e el e e e e e e e e i e e e e e e e e e
%take a break from writing the journal file and
%generate macro script for ploting convergence

savefiguresmacrofile=fopen ([ PathToWorkingDirectory , ’/input/save_figures .macro’], 'w’)
> (cx—macro—define ’ ,char (10)]) ;

al
,[ 777 ((save_figures_to_-png..’ ,char(10)]);
7)) s %open parentheses

fprintf(savefiguresmacrofile
fprintf(savefiguresmacrofile
fprintf(savefiguresmacrofile ,’”
%surface contour zoomed out (includes unheated regions)
fprintf(savefiguresmacrofile ,[ ’/display/set—window._1’,char (10)]) ;
fprintf(savefiguresmacrofile ,[ ’/display/set/contours/surfaces.’,HeatedSurfaceZonel ,’
-’ ,HeatedSurfaceZone2,’.’ ,UnHeatedBottomSurfaceZone, ()’ ,char(10)]);
fprintf(savefiguresmacrofile ,[ ’/display/set/contours/node—values_yes’,char(10)]);
fprintf(savefiguresmacrofile ,[ ’/display/set/contours/n—contour.100’,char(10)]);
fprintf(savefiguresmacrofile ,[ ’/display/set/contours/filled —contours_yes’,char(10)])

fprintf(savefiguresmacrofile ,[ ’/display/set/colors/skip—label_10’,char(10)]);
fprintf(savefiguresmacrofile ,[ ’/display/set/windows/scale/format.\\"%%0.2f\\” ’,char

(10)]) 5
%/display/set/colo—map gray
fprintf(savefiguresmacrofile ,[’/display/contour/temperature_.’ , MinPlotTemperature, ’.’
,MaxPlotTemperature, char (10)]) ;
fprintf(savefiguresmacrofile ,[ ’/display/views/restore—view._front ’,char(10)]);
fprintf(savefiguresmacrofile ,[ ’/display/views/auto—scale’,char(10)]);

fprintf(savefiguresmacrofile ,[’/display/save—picture.\\”./output/images/
SurfaceTemperatureZoomedOut /SurfaceTemperatureZoomedOut—%%i . png\\” -yes ’,char (10)

mkdir ([ PathToWorkingDirectory , ’/output/images/SurfaceTemperatureZoomedOut/’])

%surface contour zoomed in (heated regions only)

fprintf(savefiguresmacrofile ,[ ’/display/set—window._1’,char (10)]) ;

fprintf(savefiguresmacrofile ,[’/display/set/contours/surfaces.’,HeatedSurfaceZonel ,’
-’ ,HeatedSurfaceZone2,’_()’ ,char(10)]);

fprintf(savefiguresmacrofile ,[ ’/display/set/contours/node—values_yes’,char(10)]);

fprintf(savefiguresmacrofile ,[ ’/display/set/contours/n—contour.100’,char(10)]);

fprintf(savefiguresmacrofile ,[ ’/display/set/contours/filled —contours_yes’,char(10)])

fprintf(savefiguresmacrofile ,[ ’/display/set/colors/skip—label_10’,char(10)]);
fprintf(savefiguresmacrofile ,[ ’/display/set/windows/scale/format.\\"%%0.2f\\” ’,char

(10) 1)
%/ display/set/colo—map gray

fprintf(savefiguresmacrofile ,[ ’/display/contour/temperature.’ ,MinPlotTemperature, ’.’
,MaxPlotTemperature, char (10)]) ;

fprintf(savefiguresmacrofile ,[ ’/display/views/restore—view_front ’,char(10)]);

fprintf(savefiguresmacrofile ,[ ’/display/views/auto—scale ’,char(10)]);

fprintf(savefiguresmacrofile ,[ ’/display/save—picture.\\”./output/images/
SurfaceTemperatureZoomedIn/SurfaceTemperatureZoomedIn—%%i . png\\” -yes ’ ,char (10)])

mkdir ([ PathToWorkingDirectory , ’/output/images/SurfaceTemperatureZoomedIn/’])

%radial line
fprintf(savefiguresmacrofile ,[ ’/display/set—window.1’,char (10)]) ;
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fprintf(savefiguresmacrofile ,[’/plot/solution—set/numbers_float._3_float .2’ ,char(10)
15

fprintf(savefiguresmacrofile ,[’/plot/solution—set/auto—scale_yes_yes’ ,char(10)]);

fprintf(savefiguresmacrofile ,[ ’/plot/solution—set/auto—scale._yes_no.’,
MinPlotTemperature, =’ ,MaxPlotTemperature ,char (10)]) ;

fprintf(savefiguresmacrofile ,[’/plot/solution—set/label \\”X_Position\\” -\\"\\”’,
char (10)]);

fprintf(savefiguresmacrofile ,[ ’/plot/solution—set/lines._0_\\" center\\”_-1_\\"
foreground\\” .no’,char (10)]);

%this doesn’t work on multi processor because fluent can do the arclength after
partitioned

%/plot/plot no \”\” no no temperature no yes no radial—linel ()

fprintf(savefiguresmacrofile ,[ ’/plot/plot_yes_.\\”\\” cno_no_temperature_yes.1.0.0.
radial—linel . ()’ ,char(10)]);

fprintf(savefiguresmacrofile ,[’/display/save—picture_\\”./output/images/
SurfaceTemperatureRadiall /SurfaceTemperatureRadiall—%%i .png\\” .yes’,char(10)]);

mkdir ([ PathToWorkingDirectory , ’/output/images/SurfaceTemperatureRadiall/’])

%skip this for now

AR\

X X X N

X XK

R

X

A

else

end

%radial line zoomed in

fprintf(savefiguresmacrofile ,[’/display/set—window 1°,char(10)]);

fprintf(savefiguresmacrofile ,[’/plot/solution—set/numbers float 3 float 27,char(10)
/) ;

fprintf(savefiguresmacrofile ,[’/plot/solution—set/auto—scale yes no 7,
MinPlotTemperature,’ ’, MazPlotTemperature, char(10)]) ;

fprintf(savefiguresmacrofile ,[’/plot/solution—set/label \\”X Position\\” \\”\\”’,
char(10)]) ;

fprintf(savefiguresmacrofile ,[’/plot/solution—set/lines 0 \\”center\\” 1 \\”
foreground\\” no’, char(10)]);

%this doesn’t work on multi processor because fluent can do the arclength after
partitioned

%/plot/solution—set/auto—scale no 0 .01 yes

%/plot/plot mo \”\” no no temperature no yes no radial—linel ()

fprintf(savefiguresmacrofile ,[’/plot/solution—set/auto—scale no —.095 —.085 yes’,
char(10)]);

forintf(savefiguresmacrofile ,[’/plot/plot yes \\”\\” no no temperature yes 1 0 0
radial—linel () ’,char(10)]);

forintf(savefiguresmacrofile ,[’/display/save—picture \\”./output/images/
SurfaceTemperatureRadiall—zoomed/SurfaceTemperatureRadiall —zoomed—%%t . png\\”’, char (10)])

’

mkdir ([ PathTo WorkingDirectory, ’/output/images/SurfaceTemperatureRadiall —zoomed/ ’])

%close out macro

fprintf(savefiguresmacrofile ,[’”)’,char(10)]);
fprintf(savefiguresmacrofile ,[’...))’,char(10)]);
fclose(savefiguresmacrofile);

%continue from a previously running solution
fprintf(journalfile ,[’/file /read—data../input/’,DataFileName, char(10)]);
fprintf(journalfile ,[’/file /auto—save/root—name../output/cas—dat/’ ,CFDCase, char (10)
s
fprintf(journalfile ,[’/file /write—case../output/cas—dat/’ ,CFDCase,’.cas’,char(10)]);
%this is really a waste of disk space but it makes the continuation of
previous cases much simpler.

if strcmp(CFDCaseToContinue, 'N/A’) | ( exist ([PathToWorkingDirectory,’./output/status/

FirstOrderSteadyShouldBeConverged .status ’], ' file ’)"=2)
%beging solving
fprintf(journalfile ,[’/solve/iterate.’ ,FirstOrderlterations ,’_yes_yes_yes’ , char(10)
1) ;%extra yes gives error if not appending but its okay.

%save after converged

fprintf(journalfile ,[’/file/write—data../output/cas—dat/’ ,CFDCase, '—
FirstOrderSteadyShouldBeConverged ’,char (10)]) ;

%these commands don’t seem to work in fluent parallel mode

%fprintf(journalfile ,[’/ file/export/ascii ./output/csv/’,CFDCase,’— HeatedSurface—
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end

FirstOrderSteadyShouldBeConverged.csv ', HeatedSurfaceZonel ,’ 7,
HeatedSurfaceZone2,’ () no temperature pressure wall—shear y—plus () no yes’,
char(10)]) ;

%fprintf(journalfile ,[’/ file/export/ascii ./output/csv/’,CFDCase,’— CenterPlane—
FirstOrderSteadyShouldBeConverged. csv CenterPlane () mo temperature pressure z—
velocity y—velocity z—wvelocity () no yes’,char(10)]);

%create a status file so know where to restart the case at
fprintf(journalfile ,[ ’!touch../output/status/FirstOrderSteadyShouldBeConverged.
status’,char(10)]);

if (strcmp(Unsteady, ’'yes’) ™ =1)

%this code was used to do an steady second order convergence. it doesn’t really work
well though because under relaxation factors need

%to be made very low in order to get ”"reasomnable” convergence. it doesn’t make a
whole lot oc sense to do this

%second order convergence if the under relazation factors meed to be reduced anyway.
guessing that the first order steady convergence solution

%is probably good enough of an initial condition that once switch over to second
order unsteady, won’t need to spend a hole lot of time getting to a

%cyclical steady state condition.

if stremp(CFDCaseToContinue, 'N/A’) | (exist ([PathToWorkingDirectory, ’./output/status/
SecondOrderSteadyShouldBeConverged . status '], file ) 7=2) %if you want to
continue doing second order steady after the previous case did you may need to
rename this file. otherwise the job will just stop right away.
%change over to a second order solver after converged first order
fprintf(journalfile ,[’/solve/set/discretization —scheme/density.1’,char(10)])

fprintf(journalfile ,[’/solve/set/discretization —scheme/mom.1’,char(10)]) ;

fprintf(journalfile ,[’/solve/set/discretization —scheme/pressure.12’, char(10)
1)

fprintf(journalfile ,[’/solve/set/discretization —scheme/k._1’,char(10)]) ;

fprintf(journalfile ,[ ’/solve/set/discretization —scheme/omega.1l’,char(10)]) ;

fprintf(journalfile ,[’/solve/set/discretization —scheme/temperature.1’, char

(10) 1)

%change convergence settings since it isn’t going to converge second order
as well since the flow is wunsteady

%fprintf(journalfile ,[’/solve/monitors/residual/convergence—criteria .5e—04
5e—04 .5e—04 .5e—04 .5e—04 .5e—04 .5¢—04,char(10)]);

else
%disp ('solution is converged second order steady, mothing to do’);
%if it is already converged, turn off residual convergenc checking, and
iterate just to make sure it is really converged.
fprintf(journalfile ,[’/solve/monitors/residual/check—convergence._no.no.no.no
-no_no.no’,char(10)]);
end

%set mew autosave file name
fprintf(journalfile ,[’/file /auto—save/root—name../output/cas—dat/’ ,CFDCase, —
SecondOrderSteady ’,char (10)]) ;

%save the mew case file
fprintf(journalfile ,[’/file/write—case_./output/cas—dat/’ ,CFDCase, '—
SecondOrderSteady ’,char (10)]) ;

%beging solving again
fprintf(journalfile ,[’/solve/iterate.’,SecondOrderlterations,’_yes.yes_yes  ,char(10)

1) ;%extra yes gives error if mot appending but its okay.

%save after converged as good as you can get.
fprintf(journalfile ,[’/file /write—data../output/cas—dat/’ ,CFDCase, '—
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else

SecondOrderSteadyShouldBeConverged ’ ,char (10)]) ;

%these commands don’t seem to work in fluent parallel mode

%fprintf(journalfile ,[’/ file/export/ascii ./output/csv/’,CFDCase,’— HeatedSurface—
SecondOrderSteadyShouldBeConverged. csv ', HeatedSurfaceZonel ,’ 7,
HeatedSurfaceZone2,’ () no temperature pressure wall—shear y—plus () no yes’,
char(10)]) ;

%fprintf(journalfile ,[’/ file/export/ascii ./output/csv/’,CFDCase,’— CenterPlane—

SecondOrderSteadyShouldBeConverged. csv CenterPlane () no temperature pressure z—

velocity y—velocity z—wvelocity () no yes’,char(10)]);

%create a status file so know where to restart the case at
fprintf(journalfile ,[ ’!touch../output/status/SecondOrderSteadyShouldBeConverged.
status’,char (10)]);

if strcmp(CFDCaseToContinue, ’N/A’) | (exist ([PathToWorkingDirectory,’./output/status/

SecondOrderUnsteadyBegin.status '], ’ file ') 7=2)
%change over to a second order solver after converged first order

fprintf(journalfile ,[’/solve/set/discretization —scheme/density.1’,char(10)])

fprintf(journalfile ,[’/solve/set/discretization —scheme/mom_1’,char (10)])

fprintf(journalfile ,[’/solve/set/discretization —scheme/pressure.12’,char(10)

1)
fprintf(journalfile ,[’/solve/set/discretization —scheme/k.1’,char(10)]);
fprintf(journalfile ,[ ’/solve/set/discretization —scheme/omega.1’,char(10)])
fprintf(journalfile ,[’/solve/set/discretization —scheme/temperature.1’, char

(10) 1)

%switch over to an unsteady simulation

fprintf(journalfile ,[’/define/models/unsteady —2nd—order.yes’,char (10)]) ;

fprintf(journalfile ,[’/solve/set/time—step.’,UnsteadyTimeStep,char(10)]);
(1

)

fprintf(journalfile ,[ /solve/set/data—sampling_yes_1l_yes_yes_yes’  char(10)])

,
fprintf(journalfile ,[ ’/solve/initialize /init —flow—statistics ’,char(10)]);

Imow set the data file quantities. fluent is dumb and you need to do 1
iteration in order for it to realize they ezist.

fprintf(journalfile ,[’/solve/dual—time—iterate.l_.l_yes_yes_yes_yes_yes._yes
char (10)]) ;
fprintf(journalfile ,[’/file /data—file —options_yes.nusselt —number_heat—

)
)

transfer —coef_velocity —magnitude_vorticity —-mag.mean—nusselt —number_mean—
heat—transfer —coef_mean—velocity —magnitude _mean—temperature.()’,char (10)

s

%set surface monitor settings to do every time step instead of iteration.
fprintf(journalfile ,[’/solve/monitors/surface/set—monitor.

Average_Surface_Temperature_TimeStep.” Area—Weighted _Average” .temperature
-’ ,HeatedSurfaceZonel ,’_’ ,HeatedSurfaceZone2,’_()_-no_yes_yes.”./output/

csv/AverageSurfaceTemperatureTimeStep.csv” . 1l_yes.flow—time’ ,char(10)])
fprintf(journalfile ,[’/solve/monitors/surface/set—monitor.

)

Average_Nusselt _Number_TimeStep.” Area—Weighted _Average” _nusselt —number.’
,HeatedSurfaceZonel ,’_’ ,HeatedSurfaceZone2,’_()._no_yes_yes.”./output/csv

/AverageNusseltNumberTimeStep.csv” . 1l_yes_flow—time’ ,char(10)]);
fprintf(journalfile ,[ ’/solve/monitors/surface/set—monitor.
Vertex_Max_Temperature_TimeStep.” Vertex _-Maximum” _temperature.’

HeatedSurfaceZonel ,’.’ ,HeatedSurfaceZone2 ,’.().no.yes.yes.”./output/csv/
VertexMaximumSurfaceTemperatureTimeStep.csv” _1_yes_flow—time’ ,char(10)])

b
Inow setup surface monitors of time averaged quantities
fprintf(journalfile ,[’/solve/monitors/surface/set—monitor.

Mean_Average_Surface_Temperature_TimeStep.” Area—Weighted _Average” _mean—
temperature.’ ,HeatedSurfaceZonel ,’.’ ,HeatedSurfaceZone2,’_()_-no_yes._yes.
”./output/csv/MeanAverageSurfaceTemperatureTimeStep.csv” _l_.yes_flow—time

> ,char (10)1]) ;
fprintf(journalfile ,[ ’/solve/monitors/surface/set—monitor.
Mean_Average_Nusselt_Number_TimeStep.” Area—Weighted _Average” _mean—

nusselt —number.’ ,HeatedSurfaceZonel ,’ .’ ,HeatedSurfaceZone2,’.()._no_yes.
yes.”./output/csv/MeanAverageNusseltNumberTimeStep.csv”’_1_yes_flow—time’

schar (10) ) ;
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end

fprintf(journalfile ,[’/solve/monitors/surface/set—monitor.
Mean_Vertex_Max_Temperature_.TimeStep.” Vertex_Maximum” .mean—temperature.’
,HeatedSurfaceZonel ,’_’ ,HeatedSurfaceZone2,’_()._no_yes_yes.”./output/csv
/MeanVertexMaximumSurfaceTemperatureTimeStep.csv” _1_yes._flow—time’ ,char

(10)]);

%set animation to every time step
fprintf(journalfile ,[ ’/solve/execute—commands/add—edit_savefigures.1.”time—
step” .”save_figures_to_png”’,char(10)]);

%set mew autosave settings
if NumberOfFormerTimeStepsToSave==0
fprintf(journalfile ,[’/file /auto—save/retain —most—recent—files .no’,
char (10)]);

else
fprintf(journalfile ,[’/file /auto—save/retain—most—recent—files._yes’,
char (10)1]);
fprintf(journalfile ,[’/file /auto—save/max—files .’ ,num2str(
NumberOfFormerTimeStepsToSave) ,char (10)]) ;
end

fprintf(journalfile ,[’/file /auto—save/data—frequency.1l’,char(10)]);
fprintf(journalfile ,[’/file /auto—save/root—name../output/cas—dat/’,CFDCase,
—SecondOrderUnSteady’,char (10)]) ;

)

%these commands don’t seem to work in fluent parallel mode

%set autosaving of data at each time step

%fprintf(journalfile ,[’/ file/transient—ezport/ascii ./output/csv/’,CFDCase
,’— HeatedSurface—Unsteady ', HeatedSurfaceZonel ,’ ’,HeatedSurfaceZone2, '’
() temperature pressure wall—shear y—plus () no no HeatedSurface 1 time—
step 7, char(10)]) ;

%fprintf(journalfile ,[’/ file/transient—ezport/ascii ./output/csv/’, CFDCase
,’— CenterPlane—Unsteady CenterPlane () temperature pressure z—velocity y
—velocity z—wvelocity () no no CenterPlane 1 time—step ', char(10)]);

%save the mew case file
fprintf(journalfile ,[’/file /write—case_./output/cas—dat/’ ,CFDCase, '—
SecondOrderUnSteady ’,char (10)]) ;

%create a status file so know where to restart the case at
fprintf(journalfile ,[ ’!touch../output/status/SecondOrderUnsteadyBegin.status
*char (10)]) ;
elseif strcmp(ResetUnsteadyStatistics, ’yes’)
fprintf(journalfile ,[’/solve/initialize /init—flow—statistics ’,char(10)]);
end

%this duplicate command shouldn 't be necessary but there seems to be a bug in fluent
so you have to reissue it every time you load the case file because it won’t

save
%set animation to every time step
fprintf(journalfile ,[’/solve/execute—commands/add—edit._savefigures._1."time—step”.”

save_figures_to_png”’ ,char(10)]);

%start solving
fprintf(journalfile ,[’/solve/dual—time—iterate.’,UnsteadyTimeSteps,’'.’,
SecondOrderlterations , ’_yes_yes_yes_yes_yes_yes_yes.yes.yes ,char(10)]);

fprintf(journalfile ,[ >exit’,char(10)]);
fclose(journalfile);
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disp(’last _chance_to_modify_any_files_before_completion,_then_press_any_key_to_continue’);
pause;

%if running locally , then run.
if strcmp(reply,’1’)
setenv ("FLUENTLM_LICENSE_FILE’ , 27016 @Qmentis. engineering .uc.edu’);
eval ([’cd.’ ,PathToWorkingDirectory])
if strcmp(CFDCaseToContinue, 'N/A”) %if this is a raw mesh then you need to also
read in the mesh and resave it because of a multi—cpu bug with fluent or
pointwise .
eval ([’!/usr/ansys_inc/v121/fluent /bin/fluent_3ddp_-—gu.—driver_null_—i._./
input/WriteMultiCoreMesh.jou’]) ;
end
%if want to use less memory use single precision and single processor
eval ([’!/usr/ansys_inc/v121/fluent /bin/fluent _3ddp-—gu-—t4._—ssh_—cnf=127.0.0.1 _—
driver_null_—i../input/journalfileMATLAB . jou’])

else
%tar up the file
eval ([’!tar.—C.’ ,PathToOutputFolder,’.—cf.’ ,PathToUploadFolder,’/’ ,CFDCase, ’.input.
tar.’ ,CFDCase])
%make a copy of the batch submission script outside of the tarfile so it can
actually be submitted
eval ([ ’!cp.’,PathToWorkingDirectory , ’/input/’ ,CFDCase, ’. BatchSubmission.’,
PathToUploadFolder,’/’]) ;
eval ([’!cp.’,PathToWorkingDirectory , ’/input/’ ,CFDCase, ' . DebugBatchSubmission.’,
PathToUploadFolder,’/’]) ;
end

A.4 CFD Post Processing Scripts
A.4.1 ExtractHeatedSurfaceBatchWriter.m

clc;

clear all;
clear global;
close all;

TR T T I6 06060 e T e 6 6 60 e e T T 6 606 e e e X6 66
CFDCase="CFD0045"
EzportCaseFileName="CFD00/5—SecondOrderUnSteady. cas’
DataFileNamePrefic="CFD0045—SecondOrderUnSteady ’
FormerHawkJobNumber="";

StartingTimeStep Number="788

EverXXzStepsSaved=1

EndingTimeStepNumber=819

SliceNumberofCPUs=8;

SliceWallTime="21:00:00"

queue="regular ’

707070/0707070/070707070707070/07070/0767070/07070707670707/0707070

NN RSN

0707070,

%00000000(/000000000000000‘/00000‘/000000

CFDCase="CFD0047’

SliceCaseFileName="CFD0047-SecondOrderUnSteady . cas’

FormerHawkJobNumber="3815072.HAWK’ ;

StartingTimeStep Number=270

EverXXzStepsSaved=1

EndingTimeStepNumber=1000 %can make this a really high number because it isn’'t really
going to hurt anything if the files aren’t all there yet

SliceNumberofCPUs=38;

SliceWallTime="24:00:00"

queue="regular’

0707070707070707070707070707070707070707070707070,

0/0/07070/0/07/07070/0/0707070/0/07070/0/0/07070/0/07070/0/0/07070

R RN

N XN KN
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NN RSN

NN RN

N XN RR KRR

R
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%

070707070, 070707070707070707070707070707070707070707070;

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0

CFDCase="CFD0051’

EzportCaseFileName="CFD0051. cas’ %this wvariable can’t be called CaseFileName

because that is repopulated by ReadSpreadsheets
DataFileNamePrefic="CFD0051"’
FormerHawkJobNumber="819180.HAWK’ ;
StartingTimeStepNumber=261
EverXXzStepsSaved=1

EndingTimeStepNumber=519 %can make this a really high number because

going to hurt anything if the files aren’t all there yet
SliceNumberofCPUs=12;
SliceWallTime="48:00:00" %does about 10 per hour
queue="regular ’

070707070707070,

%7 GOUOVOVO00000000000000000000000000

[y 07070, 0707070,

06076707076/076707076007670707670067070707076707670707670767070
CFDCase="CFD0046’
EzportCaseFileName="CFD00/6—SecondOrderUnSteady. cas’
DataFileNamePrefic="CFD0046—SecondOrderUnSteady ’
FormerHawkJobNumber=""

StartingTimeStepNumber=151

EverXXzStepsSaved=1

EndingTimeStep Number=1000

SliceNumberofCPUs=10;

SliceWallTime="110:00:00"

queue="regular ’

%00000000000000000000000000000000

07070,

TR T I6 060608 e e e 6 6 66 e e e T T 6 6060 e e e 76 66
CFDCase="CFD0052°
EzportCaseFileName="CFD0052—SecondOrderUnSteady. cas’
DataFileNamePrefic="CFD0052—SecondOrderUnSteady ’
FormerHawkJobNumber="3821153.HAWK’ ;
StartingTimeStep Number =323

EverXXzStepsSaved=1

EndingTimeStepNumber=1000

SliceNumberofCPUs=10;

SliceWallTime="5:00:00"

queue="regular ’

0707070,

l/000000000000000000000000000000000

R Te NI R TeTe 60 e e e Ve e e e e e e e e e e e e e % %%
CFDCase="CFD0048’
EzportCaseFileName="CFD0048—SecondOrderUnSteady. cas’
DataFileNamePrefic="CFD0048SecondOrderUnSteady ’
FormerHawkJobNumber="815945.HAWK’ ;

Starting TimeStep Number=18/

EverXXzStepsSaved=1

EndingTimeStep Number=260

SliceNumberofCPUs=10;

SliceWallTime="26:00:00"

queue="regular ’

070707070707070707070707070707070707070,

0/0/07070/0/07/07070/0/07070/0/0/07070/0/0/07070/0/0707070/0/07070

07070707070707070707070707070707070707070707070707070707070707070,

60006060600 )60606 00060606 0006060606060606 06060606 060606606
CFDCase="CFD0053’
EzportCaseFileName="CFD0055—SecondOrderSteady . cas’

SliceDataFileName="CFD0055—SecondOrderSteadyShouldBeConverged ’

include . dat
FormerHawkJobNumber =
SliceNumberofCPUs=10;
SliceWallTime="1:00:00"
queue="debug ’

07070707070707070707070707070707070707070, 0707070,

70/0707070707070/070707070707070/0707076707070/0/0707070707070/070

’ s,

R T6TeI6 0 e o6 o6 e o6 e e Te e e e e e e e e e e
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97
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128
129
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RN XX

XXX K
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RN XK N XXX

NN RENN ISR
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R XX KN X
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\?&&&&

(

%

CFDCase="CFD0020’
EzportCaseFileName="CFD0020—SecondOrderSteady. cas’
SliceDataFileName="CFD0020—SecondOrderSteadyShouldBeConverged ’
include .dat
FormerHawkJobNumber =
SliceNumberofCPUs=10;
SliceWallTime="1:00:00"
queue="debug ’

0707070707070707070707070707070707070707070707070707070;

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0

2.

070707070707070707070707070707070707070707070707070707070;

060760606760076707606000670760600067076606 0600767676 0600767670

CFDCase="CFD0025’

EzportCaseFileName="CFD0025—SecondOrderSteady . cas’

SliceDataFileName="CFD0025—SecondOrderSteadyShouldBeConverged ’
include . dat

FormerHawkJobNumber=""

SliceNumberofCPUs=10;

SliceWallTime="1:00:00"

queue="debug ’

T T6 6 a6 66 e e e e e e e e e e e e e e e e e 6%

0707070707070,

R Te I T Tee 0 e Te e e e 660 e e e e e e 06 e e e e e o6 %%
CFDCase="CFD0029’
EzportCaseFileName="CFD0029—-SecondOrderSteady. cas’
SliceDataFileName="CFD0029—SecondOrderSteadyShouldBeConverged ’
include . dat
FormerHawkJobNumber =
SliceNumberofCPUs=10;
SliceWallTime="3:00:00"
queue="regular ’

0707070707070707070707070707070707070707070707070707070;

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0

).

07070707070707070707070707070707070707070707070707070707070707070,

060760606760076707606000670760606067076606 0600767676 0600767670
CFDCase="CFD0031’
EzportCaseFileName="CFD0031—SecondOrderSteady . cas’
SliceDataFileName="CFD0031—SecondOrderSteady —1—18700’
FormerHawkJobNumber=""

SliceNumberofCPUs=10;

SliceWallTime="1:00:00"

queue="debug’

707070/07070707/0707070/0707070/07070/0767070/0707070707070/0707070

R Te R TeTeRTeTe 60 e e e Ve e e e e e e e e e e e e e % %%

CFDCase="CFD0036"’

EzportCaseFileName="CFD0036—SecondOrderSteady . cas’

SliceDataFileName="CFD0036—SecondOrderSteadyShouldBeConverged ’
include . dat

FormerHawkJobNumber=""

SliceNumberofCPUs=10;

SliceWallTime="1:00:00"

queue="debug’

BT Te NI Te e 060 e e e e e e e e I e e e e e e e e 0%

07070707070707070707070707070707070707070707070707070707070707070,

0/07/07070707070707/07070/0707/0707070/0/070707070/070707/070/07/0/070

CFDCase="CFDO0041’
EzportCaseFileName="CFD0041—SecondOrderSteady . cas’
SliceDataFileName="CFD0041—SecondOrderSteadyShouldBeConverged ’
include .dat
FormerHawkJobNumber =
SliceNumberofCPUs=10;
SliceWallTime="1:00:00"
queue="debug ’

07070707070707070707070707070707070707070, 0707070,

70/0707070707070/070707070707070/0707076707070/07070767070/070/070

’ s,

R T6Te6 0 e o6 N6 e o6 e e e e e e e e e e e e e
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%don 't

include

Y%don 't

%don 't

Y%don ’ t

.dat

%don 't

%don 't



158 % CFDCase="CFD0024’

159 % FEzportCaseFileName="CFD002/—SecondOrderSteady.cas’

160 % SliceDataFileName="CFD002/—SecondOrderSteady—1—25000’ %don’t include .dat

161 % FormerHawkJobNumber=""

162 % SliceNumberofCPUs=10;

163 % SliceWallTime="1:00:00"

164 % queue=’debug’

165 % %6000 060600006060 60606 0660 066 e e 6 e e o6 6 e o6 %

166

167 % J%%606% 0670626760600 0606 6067 060 ie e i 6 e ie e o6 e 6% 6%

168 % CFDCase="CFD0037’

169 % EzportCaseFileName="CFD0037-SecondOrderSteady . cas’

170 % SliceDataFileName="CFD0037-SecondOrderSteadyShouldBeConverged ’ %don ’ t
include .dat

171 % FormerHawkJobNumber=""

172 % SliceNumberofCPUs=10;

173 % SliceWallTime="1:00:00"

174 % queue=’debug’

175 % 0060600600006 %6060 066 6067 06 ie e e ie e ie e ie e e 6% o6

176

177 % T0 006060066 7660 e e e e e e e e e e e e e e e e e %

178 % CFDCase="CFD0043’

179 % EzxzportCaseFileName="CFD00/5—SecondOrderSteady . cas’

180 % SliceDataFileName="CFD00/3—SecondOrderSteadyShouldBeConverged ’ %don 't
include .dat

181 % FormerHawkJobNumber="";

182 % SliceNumberofCPUs=10;

183 % SliceWallTime="1:00:00"

184 % queue=’debug’

185 % Tt 0ete e e e e e e e e e e e e e e e e e e e e e e e %

186

187

188 % J6%%606% 067062676067 7606 76267 060 ie e e 6o V6 e o6 e 76066 %

189 % CFDCase="CFD0056"’

190 % EzportCaseFileName="CFD0056—SecondOrderSteady . cas’

191 % SliceDataFileName="CFD0056—SecondOrderSteadyShouldBeConverged ’ %don 't
include .dat

192 % FormerHawkJobNumber="822198 HAWK’ ;

193 % SliceNumberofCPUs=10;

194 % SliceWallTime="1:00:00"

195 % queue=’debug’

196 % J6%6%606%6 067060676060 0606 6067 06 ie e e 6o ie e ie e e 6% o6

197

198 % T0%% 0620006260066 % e e e e e e e e e e e e e e e

199 % CFDCase="CFD0054’

200 % EzportCaseFileName="CFD005/—SecondOrderSteady. cas’

201 % SliceDataFileName="CFD005/—SecondOrderSteadyShouldBeConverged ’ %don 't
include .dat

202 % FormerHawkJobNumber=""

203 % SliceNumberofCPUs=10;

204 % SliceWallTime="8:00:00"

205 % queue=’'regular’

206 % %IRRT e e e e e e e e e e e e e e e e e e %%

207

208

209

210 % R%T 0066 e a6 e o6 e e e e e e e e e a6 %

211 % CFDCase="CFD0059°

212 % EzportCaseFileName="CFD0059. cas’

213 % DataFileNamePrefiz="CFD0059° %don’t include .dat

214 % FormerHawkJobNumber="326193.HAWK’;

215 % StartingTimeStep Number =920

216 % EverXXzStepsSaved=1

217 % EndingTimeStep Number=2000

218 % SliceNumberofCPUs=10;

219 % SliceWallTime="24:00:00"

220 % queue=’regular’

221 % % TH I e e e e e e e e e e e e e e e e ie 6 e e e
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222

223 % BT T e e e e e e e e e e e e a6 %%

224 % CFDCase="CFD0057’

225 % EzportCaseFileName="CFD0057-SecondOrderSteady. cas’

226 % SliceDataFileName="CFD0057-SecondOrderSteadyShouldBeConverged ’ %don 't
include .dat

227 % FormerHawkJobNumber="";

228 % SliceNumberofCPUs=10;

229 % SliceWallTime="3:00:00"

230 % queue=’'regular’

070707070707070707070707070707070707070707070707070,

231 % RRT0 T e e e e e e e e e e e e e e e o6 %
232

233 I 66 e e e e e e e e e e e e e e e e e e
234 CFDCase="CFDO0055’

235 ExportCaseFileName="CFD0055—SecondOrderSteady . cas’
236 SliceDataFileName="CFD0055—SecondOrderSteadyShouldBeConverged’ %don’t include .dat
237 FormerHawkJobNumber="";

238 SliceNumberofCPUs=10;

239 SliceWallTime="3:00:00"

240 queue='regular’

241 IR 068006068 e e e e e e e e e e e e e e 6% %%
242

243

244

245

246

247

248

249

250

251

252 %

07070, 0707070, 07070707070, 0707070, 0707070, 0707070,

0000000000000000DDOOOVDVDOOODDUOODDOGODDOODDOG00000D\ID%%%%UDOOVDUDOOVOVDDOODDOOO00000000000000000000000000000000

253 %begin generic code

254 CFDCases=’Completed CFDCases’

255 BasePath="../../";

256 CaseListDataFile=’CaseList.txt’;

257 ExperimentalData=’/Experimental /ExperimentalDataCopy/impingement/’

258 RawExperimentalDataPath=[BasePath , ExperimentalData , ’/RawData/’ |;

259 PathToCaseListDataFile=[BasePath, ExperimentalData,’/analysis/’,CaseListDataFile|;

260 OutputFolder="/local_workspace/OutputDataSlices/’

261 PathToOutputFolder=[BasePath, OutputFolder,’/’];

262 PathToWorkingDirectory=[PathToOutputFolder ,CFDCase, '/’ |;

263

264 mkdir ([PathToWorkingDirectory, ’/input/’]) %make the directory if it doesn’t already ezist

265 delete ([PathToWorkingDirectory,’/input /+.%"]) %delete any files that were in the directory
, if it already existed, even though they should all be overwritten anyway.

266

267

268 %include some code that reads in data from spreadsheets

269 addpath /home/andy/Desktop/CFD/CFDScripts/ %this is used because the run command

changes the path and messes all other paths defined up
270 addpath /home/andy/Desktop/CFD/Experimental/ExperimentalDataCopy/impingement/analysis/
271 addpath /home/andy/Desktop/CFD/Experimental/scripts/

272

273 ReadCFDCaseListSpreadsheet %note: can’t put a .m on the end of the sript mame because
it thinks the . is an operator or something

274 ReadExperimentalCaselListSpreadsheet

275

276

277

278 BatchScriptFile=fopen ([ PathToWorkingDirectory,’/input/’ ,CFDCase, '—ExportSlices.
BatchSubmission’], ’w’);

279 fprintf(BatchScriptFile ,[ #!/bin/csh.—x’,char(10)]);

280 fprintf(BatchScriptFile ,[ '#PBS.—1_job_type='"MPI’’’ char(10)]);

281 fprintf(BatchScriptFile ,[ '#PBS_.—o_hawk—0:andy/BatchScriptStandardErrorAndOutput/’ ,CFDCase, '—
OutputDataSlices.StandardOut’,char (10)]) ;
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284
285
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287
288
289
290
291
292
293

294
295
296
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298

299

300

301
302
303
304
305
306
307
308
309
310

311

312
313

314
315
316
317
318
319
320
321
322
323

324
325
326

327
328
329

330

fprintf(BatchScriptFile ,[ '#PBS_—e_hawk—0:andy/BatchScriptStandardErrorAndOutput/’ ,CFDCase, —
OutputDataSlices.StandardError’,char (10)]);

fprintf(BatchScriptFile , [ "#PBS_—A_WPFAFPRW29132P33’ ,char (10)]) ;

fprintf(BatchScriptFile , [ '#PBS_.—m_abe’ ,char(10)]) ;

fprintf(BatchScriptFile ,[ '#PBS_.—M_andy@schroder.net’,char (10)]) ;

fprintf(BatchScriptFile ,[ "#PBS_.—N_slc ’ ,CFDCase, char (10)]) ;

fprintf(BatchScriptFile ,[ '#PBS.—1.select=ncpus=’',num2str(SliceNumberofCPUs) ,char (10)]) ;

fprintf(BatchScriptFile ,[ '#PBS_—1_fluent=1",char (10)]) ;

fprintf(BatchScriptFile ,[ '#PBS.—1.walltime=",SliceWallTime , char (10)]) ;

fprintf(BatchScriptFile ,[ "#PBS_—q.’,queue,char (10)]) ;

fprintf(BatchScriptFile ,[ 'module_.load .CFD/fluent12.1.2’ ,char(10)]);

fprintf(BatchScriptFile ,[ ’limit_stacksize_unlimited’,char(10)]);

fprintf(BatchScriptFile ,[ ’mkdir —p_$WORKDIR/’ ,CFDCase, ’/output/csv/HeatedSurface’,char (10)
1)

fprintf(BatchScriptFile

fprintf(BatchScriptFile

fprintf(BatchScriptFile

fprintf(BatchScriptFile
./ ,char (10)]) ;

fprintf(BatchScriptFile ,[ date.>>&”./output/’ ,CFDCase, '—OutputDataSlices—$PBS_JOBID.
FluentStandardOutput” ’,char (10)]) ;

fprintf(BatchScriptFile ,[ ’fluent._3ddp_-—gu.—driver_null_—i../input/ExportSlices.jou>>&"./
output/’ ,CFDCase, '—OutputDataSlices—$PBS_JOBID . FluentStandardOutput” ’,char (10)]) ;

fprintf(BatchScriptFile ,[ cat.”./output/’ ,CFDCase, '—OutputDataSlices—$PBS_JOBID.
FluentStandardOutput” |.mail.—s.” complete.’ ,CFDCase, '~OutputDataSlices —.$PBS_JOBID”
andy@schroder.net’ ,char (10)]) ;

fclose (BatchScriptFile);

’mkdir—p _$WORKDIR/’ ,CFDCase, ’ /output /csv/CenterPlane’ ,char (10)]) ;
’mkdir.—p . $WORKDIR/’ ,CFDCase, ’ /output/cas—dat’,char (10)]) ;

’cd $WORKDIR/ ’ ,CFDCase, char (10)]) ;

’/usr/bin/rcp—r.${msas }:inbox/OutputDataSlices/’ ,CFDCase, '/input.

%generate journal file

journalfile=fopen ([ PathToWorkingDirectory ,’/input/ExportSlices.jou’],
%print out the date and time for reference

fprintf(journalfile ,[ ’!date’,char(10)]);

w’);

if strcmp (FormerHawkJobNumber, ')
fprintf(journalfile ,[’!/usr/bin/rcp.—r._${msas}: CompletedCFDCases/OutputData/’,
CFDCase, ' /output/cas—dat/’ ,ExportCaseFileName, '_./output/cas—dat/’,char(10)]);
fprintf(journalfile ,[’/file /read—case../output/cas—dat/’ ,ExportCaseFileName, char (10)
1)

else
fprintf(journalfile ,[’/file /read—case./workspace/schrodau/’ ,FormerHawkJobNumber, ’/’,
CFDCase, ’/output/cas—dat/’ ,ExportCaseFileName , char (10)]) ;
end
fprintf(journalfile ,[’/surface/plane_.CenterPlane.0.0.0.1.0.0_—1.0-1",char(10)]);

if strcmp(Unsteady, 'yes’)
for x=StartingTimeStepNumber: EverXXxStepsSaved : EndingTimeStepNumber
%print out the date and time for reference
fprintf(journalfile ,[ ’!date’,char(10)]);

if strcmp (FormerHawkJobNumber, ’ )
fprintf(journalfile ,[’!/usr/bin/rcp.—r._${msas}: CompletedCFDCases/
OutputData/’ ,CFDCase, ’/output/cas—dat/’ ,DataFileNamePrefix , '—1-"’
,num2str (x, >%05.0f ") ,’ . dat_./output/cas—dat/’ ,char (10)]) ;
fprintf(journalfile ,[’/file /read—data../output/cas—dat/’,
DataFileNamePrefix , ’—1—’ ,num2str(x, >%05.0f ’) , > . dat > ,char (10)]) ;

else
fprintf(journalfile ,[’/file /read—data./workspace/schrodau/’,
FormerHawkJobNumber, ’>/’ ,CFDCase, ’ /output /cas—dat/’,
DataFileNamePrefix , '—1—’ ,num2str(x, %05.0f ') , > .dat’ ,char (10)]) ;
end

%assumes it is second order wunsteady, which it should be

fprintf(journalfile ,[’/file /export/ascii../output/csv/HeatedSurface/’,
CFDCase, '—HeatedSurface—SecondOrderUnSteady —1—’ ,num2str(x, *%05.0f ) , .
csv.’,HeatedSurfaceZonel ,’.’ ,HeatedSurfaceZone2,’_()._-no_temperature.
pressure._wall—shear_y—plus_absolute—pressure.().no_yes’,char(10)]);

fprintf(journalfile ,[’/file /export/ascii../output/csv/CenterPlane/’ ,CFDCase,
’—CenterPlane—SecondOrderUnSteady —1—’ ;num2str(x, *%05.0f ), . csv.
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CenterPlane._()_no_temperature_pressure_x—velocity._y—velocity_z—velocity.
absolute—pressure.().no.yes’,char(10)]);

%copy slices to the archives

%this may cause an issue because not in a tar file and a lot of small files
but try it for now.

fprintf(journalfile ,[’!/usr/bin/rcp.—r../output/csv/HeatedSurface/’ ,CFDCase,
'—HeatedSurface—SecondOrderUnSteady—1— ,num2str(x, *%05.0f ") ,’ . csv.${msas
}:CompletedCFDCases/OutputDataSlices/’ ,CFDCase, ’/output/csv/
HeatedSurface/’ ,char(10)]);

fprintf(journalfile ,[’!/usr/bin/rcp_—r_./output/csv/CenterPlane/’ ,CFDCase, '—
CenterPlane—SecondOrderUnSteady—1—’ ,num2str(x, '%05.0f’) ,’.csv.${msas }:
CompletedCFDCases/OutputDataSlices/’ ,CFDCase, ’ /output/csv/CenterPlane/’

char (10)]);
end
else

%print out the date and time for reference

fprintf(journalfile ,[ ’!date’,char(10)]);

fprintf(journalfile ,[’!/usr/bin/rcp.—r.${msas}: Completed CFDCases/OutputData/’,
CFDCase, ’/output/cas—dat/’,SliceDataFileName , ’.dat../output/cas—dat/’ ,char(10)])

fprintf(journalfile ,[’/file /read—data../output/cas—dat/’, SliceDataFileName , ’.dat’,
char (10)]);

fprintf(journalfile ,[’/file/export/ascii../output/csv/HeatedSurface/’,
SliceDataFileName , ~HeatedSurface.csv.’ 6 HeatedSurfaceZonel ,’ .7,
HeatedSurfaceZone2,’.()._no_.temperature_pressure_wall—shear_y—plus._absolute—
pressure.()._no_yes’ ,char(10)]);

fprintf(journalfile ,[’/file /export/ascii../output/csv/CenterPlane/’,
SliceDataFileName , '—CenterPlane.csv_CenterPlane_() _no_temperature_pressure._.x—
velocity .y—velocity.z—velocity _absolute—pressure.().no_yes’,char(10)]);

%copy slices to the archives

%this may cause an issue because mnot in a tar file and a lot of small files but try
it for now.

fprintf(journalfile ,[’!/usr/bin/rcp_—r../output/csv/HeatedSurface/’,
SliceDataFileName , ’—~HeatedSurface . csv.${msas }: Completed CFDCases/OutputDataSlices
/’ ,CFDCase, ’/output/csv/HeatedSurface/’,char(10)]);

fprintf(journalfile ,[’!/usr/bin/rcp.—r../output/csv/CenterPlane/’,SliceDataFileName ,
'—CenterPlane . csv._${msas }: CompletedCFDCases/OutputDataSlices/’ ,CFDCase, ’ /output/
csv/CenterPlane/’ ,char (10)]);

end

fprintf(journalfile ,[’!date’,char(10)
fprintf(journalfile ,[ >exit’,char(10)]
fclose(journalfile);

A.4.2 GenerateCFDSliceValueAnimation.m

1);
)

function GenerateCFDSliceValueAnimation (CFDCase, UnsteadyTimeStep , TimeStepNumbers, SliceValue ,
RegularXGrid , RegularZGrid ,D, TargetRe , MinSliceValue , MaxSliceValue , SliceValueStep ,
SliceValueText , SliceFileName , NumberofHolesinMesh , GreyYes)

%although not reading data, writing data, so need to define where the output files
go.

CFDCases="CompletedCFDCases ’;

BasePath="../../";

PathToWorkingDirectory=[BasePath , CFDCases, ' /Post/’ ,CFDCase, ' /post/’];

mkdir ([ PathToWorkingDirectory , ’/images/UnSteadySlice ’,SliceFileName ,’/’])
%make the directory if it doesn’t already exist
mkdir ([ PathToWorkingDirectory , ’/videos/’]) %make the directory
if it doesn’t already exist
delete ([PathToWorkingDirectory , ’/images/UnSteadySlice’,SliceFileName , ’ /%.* ' ])
%delete any files that were in the directory, if it already existed

delete ([PathToWorkingDirectory , ’/videos/’ ,CFDCase, '—Slice ’,SliceFileName , =’ ,num?2str
(min(TimeStepNumbers) ) , ’—’ ,num2str (max( TimeStepNumbers) ) ,’ .mp4’])

delete ([PathToWorkingDirectory , ’/videos/’ ,CFDCase, '—Slice ’,SliceFileName , =’ ,num?2str
(min(TimeStepNumbers) ) , ’—’ ,num2str (max( TimeStepNumbers) ) , > .mpg’])
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end

for TimeStep=1:size (TimeStepNumbers,2)

[ContourFigure , ColorbarHandle]=PlotCFDSliceValues (squeeze ( SliceValue
(TimeStep ,: ,:) ) ,RegularXGrid , RegularZGrid ,D, TargetRe,
MinSliceValue , MaxSliceValue , SliceValueStep , SliceValueText ,
NumberofHolesinMesh , GreyYes , ( TimeStep —1) *str2num (
UnsteadyTimeStep) ) ;

CurrentImage = getframe(ContourFigure);

%write out file. mote that the file has to start with 1 so this
numbering scheme isn’t the same as the time step number

%note that this doesn’t work if the screen is locked. it just
outputs a black image

imwrite (CurrentImage.cdata, [PathToWorkingDirectory,’/images/
UnSteadySlice’,SliceFileName ,’/’ ,CFDCase, '—Slice ’,SliceFileName ,
'—’ ,num2str( TimeStep, *%05.0f’),’.png’]) ; %this command doesn ’t
seem to work right when specifying the output resolution

%export as an eps image. for some reason it works okay with this

contour plot... not sure why I was having problems before.
%hgexport(ContourFigure,[ . /images/’, CaseNumberSelected, '/,
CaseNumberSelected,  — ’,num2str ( TimeStep) , ’. eps '] ) ; %

this command doesn ’t seem to work right when specifying any
other format than eps? also don’t remember why it worked better
than the print command?

close (ContourFigure)
end

%first clear out an environmental variable matlab sets that messes this program up
LD_.LIBRARY_PATH_ original=getenv ( 'LD_.LIBRARY_PATH" ) ;
setenv ( 'LD_.LIBRARY PATH’ ,’’);

eval ([’ !ffmpeg_—r_’ ,num2str(1/str2num(UnsteadyTimeStep) ,3) ,’ .—sameq.—i.’,
PathToWorkingDirectory , ’/images/UnSteadySlice ’,SliceFileName ,’/’ ,CFDCase, '—Slice
’,SliceFileName , ’—%05d .png’,’ =’ ,PathToWorkingDirectory , ’/videos/’ ,CFDCase, '—
Slice’,SliceFileName , '—’ ,num2str (min( TimeStepNumbers) ) , '—’ ,num2str (max(
TimeStepNumbers) ) ,’ .mpd’])

eval ([’ !ffmpeg.—r.’ ,num2str(1/str2num(UnsteadyTimeStep) ,3),’ .—sameq.—i.’,
PathToWorkingDirectory , ’/images/UnSteadySlice ’,SliceFileName ,’/’ ,CFDCase, —Slice
> ,SliceFileName , ’—%05d .png’, .’ ,PathToWorkingDirectory , ’/videos/’ ,CFDCase, '—
Slice’,SliceFileName , '—’ ;num2str (min( TimeStepNumbers) ) , ’—’ ,num2str (max(
TimeStepNumbers)) ,’ .mpg’])

%now change the environmental variable back
setenv ( 'LD_LIBRARY_PATH’ ,LD_LIBRARY_PATH original)

A.4.3 GenerateSurfaceNuAnimation.m

function GenerateSurfaceNuAnimation (CFDCase, UnsteadyTimeStep , TimeStepNumbers ,Nu, RegularXGrid

, RegularYGrid ,D, TargetRe , MinNu, MaxNu, NuStep , HoverD , NumberofHolesinMesh)

%although not reading data, writing data, so need to define where the output files
go.

CFDCases="CompletedCFDCases ’;

BasePath="../../";

PathToWorkingDirectory=[BasePath , CFDCases, ' /Post/’ ,CFDCase, ' /post/’];

mkdir ([ PathToWorkingDirectory , ’/images/UnSteadySurfaceNu/’]) %
make the directory if it doesn’t already ezist

mkdir ([ PathToWorkingDirectory , ’/videos/’]) %make the directory
if it doesn’t already exist

delete ([PathToWorkingDirectory , ’/images /UnSteadySurfaceNu /*.x "]) %

delete any files that were in the directory, if it already existed
delete ([PathToWorkingDirectory ,’/videos/’ ,CFDCase, '—SurfaceNu—’',num2str (min (

173



12

13
14
15

16
17
18

19

20

21

23

24
25
26
27
28
29

31
32

33

—_

end

TimeStepNumbers) ) , ’—’ ;num2str (max( TimeStepNumbers) ) ,’.mp4’])
delete ([PathToWorkingDirectory , ’/videos/’ ,CFDCase, '—SurfaceNu—’ ,num2str (min (
TimeStepNumbers) ) , ’—’ ;num2str (max( TimeStepNumbers) ) ,’ .mpg’])

for TimeStep=1:size (TimeStepNumbers,2)
[ContourFigure , ColorbarHandle]=PlotNuSurfaceCFD (squeeze (Nu(TimeStep
,:,:) ) ,RegularXGrid , RegularYGrid ,D, TargetRe , MinNu, MaxNu, NuStep ,
HoverD , NumberofHolesinMesh , 'Nu’ ,( TimeStep —1) *str2num (
UnsteadyTimeStep) ) ;

CurrentImage = getframe(ContourFigure);

%write out file. mote that the file has to start with 1 so this
numbering scheme isn’t the same as the time step number

%note that this doesn’t work if the screen is locked. it just
outputs a black image

imwrite (CurrentImage.cdata, [PathToWorkingDirectory,’/images/
UnSteadySurfaceNu/’ ,CFDCase, ’—SurfaceNu—’' ,num2str( TimeStep , ’
%05.0f),” .png’]); %this command doesn’t seem to work right
when specifying the output resolution

%export as an eps image. for some reason it works okay with this

contour plot... not sure why I was having problems before.
%hgexport(ContourFigure,[ . /images/’, CaseNumberSelected, '/,
CaseNumberSelected,  — ’,num2str ( TimeStep) , ’. eps '] ) ; %

this command doesn ’t seem to work right when specifying any
other format than eps? also don’t remember why it worked better
than the print command?

close (ContourFigure)
end

%first clear out an environmental variable matlab sets that messes this program up
LD_.LIBRARY_PATH original=getenv ( 'LD_.LIBRARY_PATH" ) ;
setenv ( 'LD_.LIBRARY PATH’ ,’’);

eval ([’ !ffmpeg_—r_’ ,num2str(1/str2num(UnsteadyTimeStep) ,3) ,’ .—sameq.—i.’,
PathToWorkingDirectory , ’/images/UnSteadySurfaceNu/’ ,CFDCase, '—SurfaceNu—%05d . png
>, 7.7 ,PathToWorkingDirectory , ’/videos/’ ,CFDCase, '—SurfaceNu—' ,num2str (min (
TimeStepNumbers) ) , '—’ ,num2str (max( TimeStepNumbers) ) ,’.mp4’])

eval ([ 7! ffmpeg._—r._’ ,num2str(1/str2num (UnsteadyTimeStep) ,3) ,’ .—sameq.—i.",
PathToWorkingDirectory , ’/images/UnSteadySurfaceNu/’ ,CFDCase, '—SurfaceNu—%05d . png
>, 7.7 ,PathToWorkingDirectory , ’/videos/’ ,CFDCase, '—SurfaceNu—' ,num2str (min (
TimeStepNumbers) ) , '—’ ,num2str (max( TimeStepNumbers) ) , > .mpg’])

%now change the environmental variable back
setenv ( 'LD_LIBRARY_PATH’ ,LD_LIBRARY_PATH _ original)

A.4.4 GetRegularCFDSliceValues.m

function
RegularZGrid ,D, TargetRe , UnsteadyTimeStep , RegularAbsolutePressure , NumberofHolesinMesh]|=
GetRegularCFDSliceValues (CFDCase, DataFileSuffix)

[Regularvx , Regularvy , Regularvz , RegularTemperature , RegularPressure , RegularXGrid ,

%setup some paths for reading the input data

CFDCases="CompletedCFDCases ’;

BasePath="../../";

CaseListDataFile=’CaselList . txt ’;

ExperimentalData=’/Experimental /ExperimentalDataCopy/impingement/’;
PathToWorkingDirectory=[BasePath , CFDCases, '/OutputDataSlices/’ ,CFDCase, '/’ ];
RawExperimentalDataPath=[BasePath , ExperimentalData ,’ /RawData/’ |;
PathToCaseListDataFile=[BasePath , ExperimentalData,’/analysis/’,CaseListDataFile];

%include some code that reads in data from spreadsheets

Read CFDCaseListSpreadsheet %note: can’t put a .m on the end of the sript name
because it thinks the . is an operator or something

ReadExperimentalCaseListSpreadsheet

ReadLabViewData %include some code that reads labview data and calculates a
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%read in data

Slice=importdata ([ PathToWorkingDirectory , 'output/csv/CenterPlane/’ ,CFDCase,

DataFileSuffix]) ;

X=Slice .data (:,2);
Z=Slice . data (:,4) ;

%need to round because all mesh points aren’t exzactly aligned.
X=round (X*10"8)*10"(—8);
Z=round (Z*10°8) 10" (—8);

XMin=min (X) ;
XMax=max (X) ;

ZMin=min(Z) ;
ZMax=max(Z) ;

%lets you do a uniform mesh if you want to for some reason
% XRange=XMaz—XMin;

% XResolution=XRange/100;

% RegularX=XMin: XResolution : XMaz;

% ZRange=ZMaz—ZMin ;

% ZResolution=ZRange/100;

% RegularZ=ZMin:ZResolution : ZMax;

RegularX=sort (X(find (Z=—ZMin)) ) ; J%need to sort because the order they are in

the data file isn’t basically random.

Center=median (RegularX) ; %assumes the is at the median grid point

RegularZ=sort (Z(find (X==Center)));

%make the mesh and then reshape it.

[RegularXGrid , RegularZGrid]=meshgrid (RegularX , RegularZ) ;
RegularXGridReshaped=reshape (RegularXGrid ,1,[]) ;
RegularZGridReshaped=reshape (RegularZGrid ,1,[]) ;

%determine whether points are inside of the mesh or not
%call code that defines the perimeter of the mesh
if NumberofHolesinMesh==

InsideTheLowerGridSingleHole

%since there is mo pressure chamber for this case, just set the wvalues to a

scalar zero
INPressureChamber=0;
ONPressureChamber=0;
elseif NumberofHolesinMesh==11
InsideTheLowerGrid11Hole
InsideThePressureChamberGridl1Hole
%see if in the pressure chamber

[INPressureChamber , ONPressureChamber|=inpolygon (RegularXGridReshaped ,

RegularZGridReshaped ,InsideThePressureChamberGrid (:,1) ,
InsideThePressureChamberGrid (:,2));
end

%see if in the lower grid

[INLower , ONLower]—lnpolygon(RegularXGrldReshaped RegularZGridReshaped ,

InsideTheLowerGrid (:,1) ,InsideTheLowerGrid (:,2) );

%now add both together
INorON=INLower+ONLower+INPressureChamber+ONPressureChamber ;

Inow define all values and convert points outside of the mesh to NaN
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RegularAbsolutePressure=ValuesInGrid (TriScatteredInterp (X,Z, Slice .data(:,5)),
RegularXGrid , RegularZGrid ,INorON) ;

Regularvz=ValuesInGrid ( TriScatteredInterp (X,Z,— Slice .data (:,6) ) ,RegularXGrid ,
RegularZGrid ,INorON) ;

Regularvy=ValuesInGrid (TriScatteredInterp (X,Z, Slice .data (:,7)) ,RegularXGrid ,
RegularZGrid ,INorON) ;

Regularvx=ValuesInGrid (TriScatteredInterp (X,Z, Slice .data (:,8)) ,RegularXGrid ,
RegularZGrid ,INorON) ;

RegularPressure=ValuesInGrid (TriScatteredInterp (X,Z, Slice .data (:,9) ) ,RegularXGrid ,
RegularZGrid ,INorON) ;

RegularTemperature=ValuesInGrid ( TriScatteredInterp (X,Z, Slice .data (:,10)),
RegularXGrid , RegularZGrid ,INorON) ;

A.4.5 GetRegularCFDSurfaceNu.m

function [RegularNu,RegularXGrid,RegularYGrid ,D, TargetRe , ExperimentalCaseNumber ,

RawExperimentalDataPath , CaseListDataFile , UnsteadyTimeStep ,HoverD , Regularyplus ,
NumberofHolesinMesh]=GetRegularCFDSurfaceNu (CFDCase, RegularlySpacedPointsX ,
RegularlySpacedPointsY , DataFileSuffix)

%setup some paths for reading the input data

CFDCases="CompletedCFDCases ’;

BasePath="../../";

CaseListDataFile=’CaseList.txt’;

ExperimentalData=’/Experimental /ExperimentalDataCopy/impingement/’;
PathToWorkingDirectory =[BasePath , CFDCases, ’/OutputDataSlices/’ ,CFDCase, '/’ |;
RawExperimentalDataPath=[BasePath , ExperimentalData , ’/RawData/’ |;
PathToCaseListDataFile=[BasePath , ExperimentalData,’/analysis/’,CaseListDataFile];

%include some code that reads in data from spreadsheets

Read CFDCaseListSpreadsheet Znote: can’t put a .m on the end of the sript mame
because it thinks the . 1s an operator or something

ReadExperimentalCaseListSpreadsheet

ReadLabViewData %include some code that reads labview data and calculates a

few derived quantities

SurfaceTemperatureData=importdata ([ PathToWorkingDirectory , "output/csv/HeatedSurface/

> ,CFDCase, DataFileSuffix ]) ;

SurfaceTemperature=SurfaceTemperatureData.data (:,9);
X=SurfaceTemperatureData.data (:,2);
Y=SurfaceTemperatureData.data (:,3);
yplus=SurfaceTemperatureData.data (:,6) ;

Tfilm=(SurfaceTemperature+UpstreamAverageTemperature) /2; %film temperature on

the forced conwvection side
h=(FoilHeatFlux)./(SurfaceTemperature—UpstreamAverageTemperature) ;

%define thermal conductivity of air as a function of temperature at atmospheric
%pressure (Incropera and DeWitt 5th edition table A.5

%K, W/ (mxK)

k_T=]

100,.00934
150,.0138
200,.0181
250,.0223
300,.0263

350,.0300
E

%calculate thermal conductivity based upon the film temperature
%do a manual, linear interpolation between 350K and 300K
k=((k-T(6,2)-k-T(5,2))/(k-T(6,1)-k-T(5,1)))*(Tfilm—-k-T(6,1))+k-T(6,2);

Nu=h=D. /k;
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A.4.6

function

if size(RegularlySpacedPointsX ,2)==1
XMin=min (X) ;
XMax=max (X) ;

XRange=XMax—XMin ;
XResolution=XRange/RegularlySpacedPointsX;
RegularX=XMint+XResolution : XResolution : XMax—XResolution;
else
RegularX=RegularlySpacedPointsX;
end

if size(RegularlySpacedPointsY ,2)==
YMin=min(Y) ;
YMax=max(Y) ;

YRange=YMax—YMin ;
YResolution=YRange/RegularlySpacedPointsY ;
RegularY=YMint+Y Resolution: YResolution :YMax—Y Resolution
else
RegularY=RegularlySpacedPointsY ;
end

RegularNu=TriScatteredInterp (X,Y,Nu) ;
Regularyplus=TriScatteredInterp (X,Y, yplus);
[RegularXGrid , RegularYGrid]=meshgrid (RegularX , RegularY ) ;

GetUnsteadyRegularCFDSliceValues.m

[Regularvx , Regularvy , Regularvz , RegularTemperature , RegularPressure , RegularXGrid ,

RegularZGrid ,D, TargetRe , Unsteady TimeStep , RegularAbsolutePressure , NumberofHolesinMesh]=
GetUnsteadyRegularCFDSliceValues (CFDCasel , CFDCaselTimeSteps , CFDCase2, CFDCase2TimeSteps ,
CFDCase3, CFDCase3TimeSteps)

end
A.4.7

clc;

00606 6 6 e T6 e Te e Te e Ve e Ve e Ve e Te e Te e ie e ie e %6 e Jes
%process the CFD data and make it a regularly spaced grid. count down in for loops
so everything goes faster because memory is already preallocated.
for x=size (CFDCaselTimeSteps,2):—1:1
disp ([ ’Current _Time._Step _Number_=_’ ,num2str (CFDCaselTimeSteps(x))]) ;
[Regularvx (x,:,:) ,Regularvy(x,:,:) ,Regularvz(x,:,:) ,RegularTemperature (x
,i,:) ,RegularPressure (x,:,:) ,RegularXGrid , RegularZGrid ,D, TargetRe ,
UnsteadyTimeStep , RegularAbsolutePressure(x,: ,:) ,NumberofHolesinMesh]=
GetRegularCFDSliceValues (CFDCasel , [ ’—CenterPlane—SecondOrderUnSteady —1—"’
,num2str (CFDCaselTimeSteps(x), %05.0f"),  .csv’]);
end
if “stremp(CFDCase2,’’)
for x=size (CFDCase2TimeSteps,2):—1:1
disp ([ >Current .Time_Step _.Number.~=.’ ,num2str (CFDCase2TimeSteps(x))]) ;

[Regularvx (x+size (CFDCaselTimeSteps,2) ,:,:) ,Regularvy (x+size (
CFDCaselTimeSteps,2) ,:,:) ,Regularvz (x+size (CFDCaselTimeSteps,2)
,:,:) ,RegularTemperature (x+size (CFDCaselTimeSteps,2) ,:,:),
RegularPressure (x+size (CFDCaselTimeSteps,2) ,:,:) ,RegularXGrid ,
RegularZGrid ,D, TargetRe , UnsteadyTimeStep , RegularAbsolutePressure
(x+size (CFDCaselTimeSteps,2) ,:,:) ,NumberofHolesinMesh]=
GetRegularCFDSliceValues (CFDCase2,[ '—CenterPlane—
SecondOrderUnSteady —1—’ ,num2str (CFDCase2TimeSteps (x) , > %05.0f ") ,’
.esv’']);
end
end
PlotConvergence.m

clear global;
clear all;
close all;
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%hard coded values

CFDCase="CFD0036’

LastlIterationsToPlot=1500 %if steady

UnSteady=’"no’; %don’t feel like reading in the case
spreadsheet so just define this manually

FirstlterationToPlot =126%.022 %if unsteady

LastIterationToPlot =226%.022 %if unsteady

T T T Te I e e e e e Nt Ve e e e e ie e e e i e e e e e e e e e e e e %

addpath /home/andy/Desktop/CFD/Experimental/scripts/
CFDCases="CompletedCFDCases/SmallFiles ’;

BasePath="../../";

PathToWorkingDirectory=[BasePath , CFDCases, >/’ ,CFDCase, /"’ ];

if strcmp(UnSteady, 'yes’)
Vertex_Max_Temperature_file="VertexMaximumSurfaceTemperatureTimeStep.csv ’;
AverageSurfaceTemperature_file="AverageSurfaceTemperatureTimeStep.csv’;
else
Vertex_Max_Temperature_file="VertexMaximumSurfaceTemperature.csv’;
AverageSurfaceTemperature_file=" AverageSurfaceTemperature.csv’;

end

Vertex_Max_Temperature=importdata ([ PathToWorkingDirectory , output/csv/’,
Vertex_Max_Temperature_file]) ;

AverageSurfaceTemperature=importdata ([ PathToWorkingDirectory , ’output/csv/’,
AverageSurfaceTemperature_file]) ;

numberofdatapoints=size (Vertex_-Max_Temperature.data,1) ;

if strcmp(UnSteady, ’yes’)
FirstDataPointPlotted=round (( FirstIterationToPlot /(Vertex_Max_Temperature.data(2,1)—
Vertex_Max_Temperature.data(1,1)))) ;;
LastDataPointPlotted=round (( LastIterationToPlot /(Vertex_-Max_Temperature.data(2,1)—
Vertex_Max_Temperature.data(1,1))));

else
FirstDataPointPlotted=numberofdatapoints —(LastIterationsToPlot /(
Vertex_-Max_Temperature.data(2,1)—Vertex_-Max_Temperature.data(1,1)));
LastDataPointPlotted=numberofdatapoints;
end

Vertex_Max_Temperature_Variation=range (Vertex_Max_Temperature.data(FirstDataPointPlotted:
LastDataPointPlotted ,2))

AverageSurfaceTemperature_Variation=range ( AverageSurfaceTemperature. data(
FirstDataPointPlotted : LastDataPointPlotted ,2))

Vertex_-Max_Temperature_handle=plot ( Vertex_Max_Temperature.data(:,1) ,Vertex_-Max_Temperature.
data (:,2));

xlim ([ Vertex_Max_Temperature.data(FirstDataPointPlotted ,1) Vertex_Max_Temperature.data (
LastDataPointPlotted ,1)])

Xlabels=get (gca, 'XTick’);

for x=1:size(Xlabels ,2)

XlabelsFormatted {x}=thousands (Xlabels (x));

end

set (gca, ’XTickLabel’ ,XlabelsFormatted)

xlabel (’Iteration )

ylabel (’Vertex _Maximum._Temperature.[K] ’)

pause
delete (Vertex_Max_Temperature_handle)
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AverageSurfaceTemperature_handle=plot (AverageSurfaceTemperature.data(:,1),
AverageSurfaceTemperature.data(:,2));

xlim ([ Vertex_-Max_Temperature.data( FirstDataPointPlotted ,1)

LastDataPointPlotted ,1)])
set (gca, ’XTickLabel’ ,XlabelsFormatted)
xlabel (’Iteration )
ylabel (’Average.Surface.Temperature.[K] )

Vertex_Max_Temperature . data (

A.4.8 PlotCFDSliceValues.m

function [ContourFigure, ColorbarHandle]=PlotCFDSliceValues(SliceValue ,RegularXGrid ,
RegularZGrid ,D, TargetRe , MinSliceValue , MaxSliceValue , SliceValueStep , SliceValueText ,

[SU )

0~ O Utk
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NumberofHolesinMesh , GreyYesNo , Time)

MinXD=round (min (min ( RegularXGrid) ) /D*10) /10;
error makes the grid points not exactly and also GetRegularCFDSurfaceNu throws

MaxXD=round (max(max

out the end points

(RegularXGrid) ) /Dx10) /10;

MinZD=round (min(min( RegularZGrid)) /D*10) /10;

MaxZD=round (max (max

%make the aspect ratio of the figure match that of the graph so minimal whitespace

(RegularZGrid) ) /Dx10) /10;

exists in the exported images, but still not too large for the screen
MaxFigureHeight=900;
MaxFigureWidth=1700;

FigureHeight=MaxFigureHeight ;

FigureWidth=floor (FigureHeight % (max(max( RegularXGrid ) )—min (min( RegularXGrid) ) ) / (max(

end

max(RegularZGrid ) )—min(min(RegularZGrid))));
if FigureWidth>MaxFigureWidth
FigureWidth=MaxFigureWidth;

FigureHeight=floor (FigureWidth * (max(max( RegularZGrid ) )—min(min( RegularZGrid)

) ) / (max(max( RegularXGrid ) )—min(min(RegularXGrid))) ) ;

XZero=60;
Z7Zero=XZero;

ContourFigure=figure (’OuterPosition’ ,[XZero ZZero FigureWidth+XZero+120 FigureHeight

+ZZero], 'Name’ ,[ ’"Re=" ,num2str( TargetRe)]); %big figure

%FontSize=40;
FontSize=25;
LineWidth=3;

%saturate the SliceValue, mainly important for wvorticity since there are
points with extreme worticity , which require a huge number of levels to get a

%note this will cause the data ticker to give the wrong value for saturated points.

good contour plot

SliceValue (find (SliceValue>MaxSliceValue) )=MaxSliceValue;
SliceValue (find (SliceValue<MinSliceValue))=MinSliceValue;

contourf (RegularXGrid /D, RegularZGrid /D, SliceValue ,100, ’LineStyle’, 'none’);
ColorbarHandle=colorbar;
set (get (ColorbarHandle , >ylabel ’) ,’String’, SliceValueText, ’Rotation’, 90,
VerticalAlignment ’, ’'Bottom’,’FontSize’ , FontSize)

hold all
if “exist(’GreyYesNo’,’var’) ||strecmp(GreyYesNo, ’yes’)

end

colormap (’gray )

caxis ([ MinSliceValue , MaxSliceValue])

set (gca, FontSize

’ ,FontSize);

set (get (gca, 'XLabel’) ,’FontSize’ ,FontSize);
set (get(gca, ’YLabel’) ,’FontSize’ ,FontSize) ;
gca, ’LineWidth’ ,LineWidth)

set (ColorbarHandle , ’LineWidth ’ ,LineWidth) ;

set

set

(
(
(
(
(

ColorbarHandle , ’ytick 7,

[MinSliceValue: SliceValueStep : MaxSliceValue]) ;
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%adjust the location of the colorbar
LocateColorbarLabel = get(ColorbarHandle, ’ylabel’);
pos = get(LocateColorbarLabel , ’position ’);

pos(1,1) = pos(1,1)+10;

set (LocateColorbarLabel , ’Position’,pos);

%plot (RegularXGridReshaped (find (INorON"=0)) /D, RegularZGridReshaped (find (INorON~=0))/

D, "Marker’,’. 7, "LineStyle ’, "none’, "MarkerEdgeColor ’, 'r’)
Fpause
%plot (X,Z,  Marker’, ., LineStyle ’, 'none’, "MarkerEdgeColor ’, "black ’)

%plot (InsideTheGrid(:,1)/D, InsideTheGrid(:,2)/D)

xlabel (’x/D’);
ylabel(’z/D’);

daspect ([1 1 1]) %constrain the azes
if exist(’Time’, ’var’)
title ([ 'Re=’",thousands (TargetRe) ,’.—_t=",num2str(Time, *%07.4f"),’s’])
else
title ([ 'Re=’",thousands (TargetRe)])
end

%zlim ([MinXD MazXD] )

%zlim ([0 .05]/D)

%ylim ([— MeasurementDomainHeight /2 MeasurementDomainHeight/2]/D)

%set(get(ContourFigure, ’ CurrentAzes’) ,’XGrid’, on’, ’YGrid’, "on’, ' XMinorTick’, on’,’
YMinorTick’, "on’, "XTick’,[—15:3:15], "YTick’,[—6:3:6])

)

set (gcf,’Color’,’w’)
if NumberofHolesinMesh==
set (get (ContourFigure, ’CurrentAxes’),’XGrid’,’on’,’YGrid’, ’on’,’XMinorTick ’ ,
>on’,’YMinorTick’, ’on’, ’XTick’,[—-30:.5:30], ’YTick’,[-5,—-4,-3,-2,-1,0])
%make the figure a little wider since the label is cut off
CurrentDimensions=get ( ContourFigure , ’OuterPosition ’);
CurrentDimensions (3)=CurrentDimensions (3) +150;
set (ContourFigure, ’OuterPosition’,CurrentDimensions) ;
elseif NumberofHolesinMesh==11
set (get (ContourFigure, ’CurrentAxes’),’XGrid’,’on’,’YGrid’, ’on’,’XMinorTick ’ ,
>on’,’YMinorTick’, ’on’, ’XTick’,[—-30:3:30], ’YTick’,[-5,—-2,0,3,6,9,12,15])
end
end

A.4.9 PlotNuCFDSingleHoleGridDependencyCases.m

clc;

clear global;
clear all;
close all;

%add path for some other scripts used

addpath /home/andy/Desktop/CFD/CFDScripts/ %this is used because the run command
changes the path and messes all other paths defined up

addpath /home/andy/Desktop/CFD/Experimental/ExperimentalDataCopy/impingement/analysis/

addpath /home/andy/Desktop/CFD/Experimental/scripts/

%need to setup path so know where to save files to

CFDCases='Completed CFDCases ’ ;

BasePath="../../";

PathToWorkingDirectory=[BasePath ,CFDCases, '’ /Post/GridDependencyStudy/’|;
mkdir ([ PathToWorkingDirectory ])

NumberofRegularlySpacedPointsX=100;
NumberofRegularlySpacedPointsY =100;

T 660 e o6 e e 6 e o6 e e e e e e T e e Ko e e e e ie e e e ie e e e
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%hard coded values, in order of increasing grid points
%Re=4,000 cases
CaseNumbersSelected={
%’ casenumber ’, 'CFD marker ’, ’'Experimental Marker’, 'CFD Label Text’, experimental yes
or mothing ’, "Exzperimental Label Text’, GridPoints, NuFilenamesuffiz’,’
SliceFilenamesuffiz ’

"CFDO0036° ,’+’,’0’, Single_Jet .CFD_.—__1.2 _million._points.—-(1/1.3"{—=1})x’,’no’,”’
Center_Jet_.Experimental’ ;1.2 , ’—SecondOrderSteadyShouldBeConverged—HeatedSurface.
csv’,’—SecondOrderSteadyShouldBeConverged—CenterPlane.csv’

"CFDO0053”,’x’,’0", Single . .Jet .CFD.—_..2.4 million._points.—.(1/1.3"0)x.(baseline)’, 'no
>, ’Center_Jet _.Experimental’ ;2.4 ,’—SecondOrderSteadyShouldBeConverged—
HeatedSurface.csv’,’—SecondOrderSteadyShouldBeConverged—CenterPlane.csv’

"CFD0054” ,.7,’0", Single _Jet .CFD_.—__5.6 _million._points.—_(1/1.3"1)x’, ’no’, Center._
Jet _Experimental’ ;5.6 ,’—SecondOrderSteadyShouldBeConverged—HeatedSurface.csv’, '—
SecondOrderSteadyShouldBeConverged—CenterPlane . csv’

"CFDO00557,’s’,’0’, Single_Jet .CFD_.—_12.6 _million_points_-—-(1/1.3"2)x’,’no’, ’Center_
Jet .Experimental’ ;12.6, ’—SecondOrderSteadyShouldBeConverged—HeatedSurface.csv’,’
—SecondOrderSteadyShouldBeConverged—CenterPlane. csv’

s

NuContourPlotMin=0;
NuContourPlotMax=75;
NuContourPlotStep=25;
VorticityContourPlotMin=—2500;
VorticityContourPlotMax=2500;
VorticityContourPlotStep=500;
VectorScaleFactor=1/100;

% % %Re=15,000 cases
% CaseNumbersSelected={

% %’casenumber ’, "CFD marker’, ’Ezperimental Marker’, 'CFD Label Text’, experimental yes
or mothing ’, "Experimental Label Text’, GridPoints, NuFilenamesuffiz’,’
SliceFilenamesuffix ’

% "CFD0041°,°+ 7,707, ’Single Jet CFD — 1.2 million points — (1/1.83°{—1})z’, 'no’,’

Center Jet Ezperimental’,1.2,’— SecondOrderSteadyShouldBeConverged—HeatedSurface.csv’,’ —
SecondOrderSteadyShouldBeConverged—CenterPlane. csv’

% "CFD0024°,’z’, 0’7, "Single Jet CFD — 2.6 million points — (1/1.8°0)z (baseline)’, 'no
7, ’Center Jet FEzperimental ’,2.6, — SecondOrderSteady—1—25000— HeatedSurface.csv’,’ —
SecondOrderSteady—1—25000— CenterPlane. csv ’

% "CFD0056°, .7, 07, Single Jet CFD — 5.9 million points — (1/1.37°1)z’, 'no’, ’ Center
Jet Exzperimental’,5.9, — SecondOrderSteadyShouldBeConverged—HeatedSurface.csv’,’—
SecondOrderSteadyShouldBeConverged—CenterPlane. csv’

% "CFD0057°,’s’, 07, ’Single Jet CFD — 18.2 million points — (1/1.37°2)z’, 'no’,  Center
Jet Exzperimental ’,13.2, — SecondOrderSteadyShouldBeConverged—HeatedSurface.csv’,’ —
SecondOrderSteadyShouldBeConverged—CenterPlane. csv’

% ;

% NuContourPlotMin=0;

% NuContourPlotMaz=150;

% NuContourPlotStep=25;

% VorticityContourPlotMin=—5000;

% VorticityContourPlotMaz=5000;

% VorticityContourPlotStep =1000;

% VectorScaleFactor=1/200;

% % %7070 % %% 6% 6% 67606 6% 6% 6% 0676 606606 e i6 % I6 e 06 e 6 e e o e io e i6 b

% % T e e e e e e e e e R e e e e e e e i e e e ie e e e o6 e e %

for CurrentCase=1:size (CaseNumbersSelected ,1)

[RegularNu (CurrentCase ,: ,:) ,RegularXGrid , RegularYGrid , TargetRe ,D, HoverD, Regularyplus
(CurrentCase ,: ,:) ,NumberofHolesinMesh]=PlotNuSpanwiseAverageExperimental AndCFD (
CaseNumbersSelected{CurrentCase ,1} ,CaseNumbersSelected{ CurrentCase ,2},
CaseNumbersSelected{CurrentCase ,3} , NumberofRegularlySpacedPointsX ,
NumberofRegularlySpacedPointsY , CaseNumbersSelected{ CurrentCase ,8},

181



90

92

93

94
95

97
98
99
100
101

102

103
104
105

106

107
108
109
110
111
112
113

114

CaseNumbersSelected{ CurrentCase ,4} , CaseNumbersSelected { CurrentCase ,5},
CaseNumbersSelected{CurrentCase ,6}) ;
MeanNu( CurrentCase )=mean(mean( RegularNu ( CurrentCase ,: ,:) ));

%calculate percent differences.
if CurrentCase™ =1
PercentChange (CurrentCase ,: ,:) =(RegularNu(CurrentCase ,: ,:)—RegularNu (
CurrentCase —1,:,:))./(RegularNu(CurrentCase —1,:,:))*100;
AbsPercentChangeofAverage (CurrentCase ,: ,:)=abs ((MeanNu( CurrentCase )—MeanNu (
CurrentCase —1)) ./ (MeanNu( CurrentCase —1)) x100) ;
MaxPercentChange (CurrentCase )=max(max(abs (PercentChange (CurrentCase ,: ,:))));
AveragePercentChange (CurrentCase )=mean(mean(abs (MaxPercentChange ( CurrentCase

)))) s

end

end

Y%override a few plot parameters for the single hole case

title ([ 'Span_Averaged._Nusselt .Number’]) ;

ylim ([min(get(gca, 'YTick’)) (max(get(gca,’ 'YTick’))+15)]) %add a little space so the
legend isn’t on top of things

hgexport (gef ,[ PathToWorkingDirectory , 'Re’ ,num2str( TargetRe) ,’SpanwiseAverages.eps’])

%pause

close all

%plot percent differences

figure (’OuterPosition’ ,[30 30 500 400]);

plot ([ CaseNumbersSelected {2:size (CaseNumbersSelected ,1) ,7}],MaxPercentChange (2:size (
CaseNumbersSelected ,1)),’—s’)

title ([ 'Maximum.Absolute.Value_.of_.Percent.Change.in_.Local_Nusselt_.Number’,char (10),’Single.
Jet .—_Re=",thousands (TargetRe) ,char(10), ’Data_Interpolated_to_a_Uniform.’ , num2str (
NumberofRegularlySpacedPointsX ), ’x’ ,num2str( NumberofRegularlySpacedPointsY ), ’.Grid’])

xlabel (’Million .Grid_Points ) ;

ylabel ("%.Change’) ;

set (get (gef, ’CurrentAxes’),’XGrid’,’on’,’YGrid’,’on’,’XMinorTick’, ’on’, ’YMinorTick’, ’on’,”’
XTick’” ,[0:1:15])

hgexport (gef ,[ PathToWorkingDirectory , 'Re’ ,num2str ( TargetRe) , ’MaxAbsPercentChangeLocalNu. eps’
1

Zpause

close all

%this plot isn’t very wuseful if the others are presented

close all

figure (’OuterPosition’ ,[30 30 500 400]);

plot ([ CaseNumbersSelected {2:size (CaseNumbersSelected ,1) ,7}], AveragePercentChange (2:size (
CaseNumbersSelected ,1)),’—s )

title ([ 'Area.Weighted _Average_.Absolute_.Value_of_Percent_Change.in_.Local_.Nusselt _Number’, char
(10),’Single_Jet.—_Re=",thousands (TargetRe) ,char (10),’Data_Interpolated_to_a_Uniform.’,
num2str ( NumberofRegularlySpacedPointsX ), ’x’ ,num2str( NumberofRegularlySpacedPointsY ), .
Grid’])

xlabel (> Million .Grid_Points ’);

ylabel ("%.Change’) ;

set (get (gef, "CurrentAxes’),’XGrid’,’on’,’YGrid’,’on’,’XMinorTick’, ’on’, ’YMinorTick’, ’on’,”’
XTick’ ,[0:1:15])

hgexport (gef ,[ PathToWorkingDirectory , "Re’ ,num2str ( TargetRe) , ’AvgAbsPercentChangeLocalNu. eps’
1

Fpause

close all

close all

figure (’OuterPosition’,[30 30 500 400]);

plot ([ CaseNumbersSelected {2:size (CaseNumbersSelected ,1) ,7}], AbsPercentChangeofAverage (2:size
(CaseNumbersSelected ,1)),’—s )

title ([ ’Absolute_Value_of_Percent._Change_in_Area.Weighted_Average_Nusselt J-Number’,char (10),’
Single_Jet_.—_Re=’,thousands (TargetRe) ,char(10),’Data_Interpolated_to_a_Uniform.’ ,num2str
(NumberofRegularlySpacedPointsX) , ’x’ ,num2str (NumberofRegularlySpacedPointsY ), _Grid’])
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xlabel (’Million .Grid_Points ) ;

ylabel ("%.Change’) ;

set (get (gef, ’CurrentAxes’),’XGrid’,’on’,’YGrid’,’on’,’XMinorTick’, ’on’, ’YMinorTick’, ’on’,”’
XTick’” ,[0:1:15])

hgexport (gef ,[ PathToWorkingDirectory , 'Re’ ,num2str( TargetRe) , ’AbsPercentChangeAvgNu.eps’])

%pause

close all

close all

figure (’OuterPosition’ ,[30 30 500 400]);

plot ([ CaseNumbersSelected {:,7}] ,MeanNu, '—s’)

title ([ "Area_.Weighted _Average_Nusselt _.Number’,char (10),’Single_Jet_.—_Re=",thousands (TargetRe
) ,char (10) ,’Data_Interpolated_to._a_Uniform.’ ,num2str( NumberofRegularlySpacedPointsX), ’x’
,num2str (NumberofRegularlySpacedPointsY ) ,’.Grid ’])

xlabel (> Million .Grid_.Points ’);

ylabel (’Nu’);

set (get (gef, "CurrentAxes’),’XGrid’,’on’,’YGrid’, ’on’,’XMinorTick’,’on’, ’YMinorTick’, ’on’,”’
XTick’” ,[0:1:15])

hgexport (gef ,[ PathToWorkingDirectory , ’'Re’ ,num2str ( TargetRe) , ’AvgNu.eps’])

Fpause

close all

%do contour plot of y+ for the coarsest case

CFDCase=CaseNumbersSelected {1,1}

PathToWorkingDirectory=[BasePath ,CFDCases, ' /Post/’ ,CFDCase, ’/post /images/’];

mkdir ([ PathToWorkingDirectory])

[ContourFigure , ColorbarHandle]=PlotNuSurfaceCFD (squeeze (Regularyplus (1,:,:)),RegularXGrid,
RegularYGrid ,D, TargetRe ,0, ceil (max(max( Regularyplus (1,:,:)))*10) /10, ceil (max(max(
Regularyplus (1,:,:)))*10)/10/2,HoverD, NumberofHolesinMesh , "y+’) ;

hgexport (gef ,[ PathToWorkingDirectory ,CFDCase, '—yplus.eps’])

Zpause

close all

%Now do contour plots for the finest grid point case
CFDCase=CaseNumbersSelected { size (CaseNumbersSelected ,1) ,1}
PathToWorkingDirectory=[BasePath , CFDCases, ’/Post/’ ,CFDCase, ’/post /images/’|;
mkdir ([ PathToWorkingDirectory ])

Imow do countour plot of Nu for the finest grid, assuming it is last in the case list

[ContourFigure , ColorbarHandle]=PlotNuSurfaceCFD (squeeze (RegularNu(size (CaseNumbersSelected
,1) ,:,:)) ,RegularXGrid , RegularYGrid ,D, TargetRe , NuContourPlotMin , NuContourPlotMax ,
NuContourPlotStep , HoverD , NumberofHolesinMesh) ;

hgexport (gef ,[ PathToWorkingDirectory ,CFDCase, ’—Nu. eps’])

Jpause

close all

Inow do countour plot of y+ for the finest grid, assuming it is last in the case list

[ContourFigure , ColorbarHandle]=PlotNuSurfaceCFD (squeeze (Regularyplus(size (
CaseNumbersSelected ,1) ,:,:) ) ,RegularXGrid , RegularYGrid ,D, TargetRe ,0, ceil (max(max(
Regularyplus(size (CaseNumbersSelected ,1) ,:,:)))*10) /10, ceil (max(max(Regularyplus (size (
CaseNumbersSelected ,1) ,:,:)))*10)/10/2,HoverD, NumberofHolesinMesh , "y+7) ;

hgexport (gef ,[ PathToWorkingDirectory ,CFDCase, '—yplus.eps’])

Fpause

close all

%get the slice data

[Regularvx , Regularvy , Regularvz , RegularTemperature , RegularPressure , RegularXGrid , RegularZGrid ,
D, TargetRe , UnsteadyTimeStep , RegularAbsolutePressure , NumberofHolesinMesh]|=
GetRegularCFDSliceValues (CFDCase, CaseNumbersSelected {size (CaseNumbersSelected ,1) ,9});

183



170
171

172
173
174
175
176
177

178
179
180
181
182
183

184

185
186
187
188
189
190

191
192
193
194

195
196

197

198
199
200
201
202
203
204
205
206
207

208
209

W N =

%plot the wvorticity

[ContourFigure]=PlotCFDSliceValues(curl (RegularXGrid , RegularZGrid , Regularvx , Regularvz) ,
RegularXGrid , RegularZGrid ,D, TargetRe , VorticityContourPlotMin , VorticityContourPlotMax ,
VorticityContourPlotStep , ’Normal_.Component_of._Vorticity.[1/s]’,NumberofHolesinMesh , 'no’)

hgexport (gef ,[ PathToWorkingDirectory ,CFDCase, ’—Vorticity .eps’])
Fpause
close all

%plot the temperature

[ContourFigure]=PlotCFDSliceValues (RegularTemperature , RegularXGrid , RegularZGrid ,D, TargetRe,
floor (min(min(RegularTemperature))/10)*10, ceil (max(max(RegularTemperature))/10)%10,10,’
Static_.Temperature.[K] > ,NumberofHolesinMesh , 'no’) ;

hgexport (gef ,[ PathToWorkingDirectory ,CFDCase, '—Temperature.eps’])

%pause

close all

%plot the wvelocity magnitude

[ContourFigure]=PlotCFDSliceValues (( Regularvx.”2+ Regularvz."2)." .5, RegularXGrid , RegularZGrid
,D, TargetRe ,0 ,max(max(( Regularvx."24+Regularvz."2).".5)) ,5,  Velocity _.Magnitude.[m/s] ’,
NumberofHolesinMesh) ;

VectorProfile (Regularvx , Regularvz , RegularXGrid , RegularZGrid ,min(min( RegularXGrid) ) ,max(max(
RegularXGrid)) ,50 ,min(min(RegularZGrid) ) ,max(max(RegularZGrid)) ,50,D, VectorScaleFactor ,

NumberofHolesinMesh )
hgexport (gef ,[ PathToWorkingDirectory ,CFDCase, '—Velocity .eps’])
%pause

xlim ([-1.75 —.75])

ylim ([=5 —4])

VectorProfile (Regularvx , Regularvz , RegularXGrid , RegularZGrid,—D,—D,50 ,min(min(RegularZGrid))
,—4.5%D,100,D,1/100,NumberofHolesinMesh)

VectorProfile (Regularvx , Regularvz , RegularXGrid , RegularZGrid , —1.5%D, —1.5%D,50 ,min (min (
RegularZGrid)),—4.5%D,100,D, VectorScaleFactor , NumberofHolesinMesh)

hgexport (gef ,[ PathToWorkingDirectory ,CFDCase, '—VelocityZoomedl .eps’])

Fpause

close all

[ContourFigure]=PlotCFDSliceValues (( Regularvx."24+Regularvz."2)." .5, RegularXGrid , RegularZGrid
,D, TargetRe ,0 ,max(max(( Regularvx.” 24+ Regularvz."2).".5)) ,5,  Velocity .Magnitude.[m/s]’,
NumberofHolesinMesh) ;

VectorProfile (Regularvx , Regularvz , RegularXGrid , RegularZGrid ,min(min( RegularXGrid) ) ,max(max(
RegularXGrid)) ,50 ,min(min(RegularZGrid) ) ,max(max(RegularZGrid)) ,50,D, VectorScaleFactor ,
NumberofHolesinMesh)

VectorProfile (Regularvx , Regularvz , RegularXGrid , RegularZGrid ,—D,—D,50 ,min(min( RegularZGrid))
,—4.5%D,50,D, VectorScaleFactor , NumberofHolesinMesh)

VectorProfile (Regularvx , Regularvz , RegularXGrid , RegularZGrid , —1.5%xD, —1.5%D,50 , min (min (
RegularZGrid)),—4.5%D,50,D, VectorScaleFactor , NumberofHolesinMesh)

VectorProfile (Regularvx , Regularvz , RegularXGrid , RegularZGrid,,—2*D,—2+D,50 ,min (min (
RegularZGrid)),—4.5%D,50 ,D, VectorScaleFactor , NumberofHolesinMesh)

VectorProfile (Regularvx , Regularvz , RegularXGrid , RegularZGrid , —2.5%D, —2.5%D,50 ,min (min (
RegularZGrid)),—4.5%D,50,D, VectorScaleFactor , NumberofHolesinMesh)

xlim ([—-3 0])

ylim ([=5 —2])

VectorProfile (Regularvx , Regularvz , RegularXGrid , RegularZGrid , —2.5%D,0,100, —4%D,—4xD,100,D,
VectorScaleFactor , NumberofHolesinMesh )

VectorProfile (Regularvx , Regularvz , RegularXGrid , RegularZGrid , —2.5xD,0,100, —3%D,—3«D,100,D,
VectorScaleFactor , NumberofHolesinMesh )

hgexport (gef ,[ PathToWorkingDirectory ,CFDCase, '—VelocityZoomed2.eps’'])

Jpause

close all

A.4.10 PlotNuMultipleCFDCases.m

clc;

clear global;
clear all;
close all;
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%add path for some other scripts used

addpath /home/andy/Desktop/CFD/CFDScripts/ %this is used because the run command
changes the path and messes all other paths defined up

addpath /home/andy/Desktop/CFD/Experimental/ExperimentalDataCopy/impingement/analysis/

addpath /home/andy/Desktop/CFD/Experimental/scripts/

%define the cases

%this is setup so it can be a copy and paste from PlotMultiple NuSpanwiseAverages.m, so some
fields are not wused

Jkeep all lines commented except the case to process

UnsteadyCaseNumbersSelected={

%’ casenumberl ', timestepnumbersl , ‘casenumber2 ’, timestepnumbres2 , 'CFD marker ’,’

Ezperimental Marker’, ’CFD label text’, ’experimental yes or mo’, ’experimental
label text’, NumberofRegularlySpacedPointsX , NumberofRegularlySpacedPointsY
% "CFD0048°,227:260, ’CFD00517,261:727,’+ 7,707, ’11 Hole — y/D=4.03 — Numerical’, 'no’, 'N
JA?, 650,100
% "CFD0052°,227:329, ’CFD0059’,380:727, 'z, ’0’,’11 Hole — y/D=8 — Numerical ’, "yes’,’
Center Row FExperimental ’,650,100
% "CFD0046°,227:727,°°,0,°. 7,07, Single Hole Repeating Case I — Numerical’, 'no’, 'N/A
7,65,100
CFDO0045° ,227:727,°’ ,0,’d’,’0’,’Single_Hole_.Repeating._.Case_1I .—_Numerical’,’no’ ,’

Center _Row_Experimental’ ;65,100

}s

Inow, assign the values from the selected case so the rest of the code doesn’t need to be
modified, and also so it stays more compact/understandable.

CFDCasel=UnsteadyCaseNumbersSelected {1};

TimeStepNumbersl=UnsteadyCaseNumbersSelected {2};

Jnote files are exported to CFDCase2’s path, also, both cases should have had the same time
step

CFDCase2=UnsteadyCaseNumbersSelected {3};

TimeStepNumbers2=UnsteadyCaseNumbersSelected {4};

NumberofRegularlySpacedPointsX=UnsteadyCaseNumbersSelected {10};

NumberofRegularlySpacedPointsY=UnsteadyCaseNumbersSelected {11};

%check to see if doing multiple cases
if “strcmp(CFDCase2,’ )

TimeStepNumbers=[TimeStepNumbersl , TimeStepNumbers2 | ; %add the 2 together
CFDCase=CFDCase2;
else
TimeStepNumbers=TimeStepNumbers] ;
CFDCase=CFDCasel ;
end

Fneed to setup path so know where to save files to
CFDCases='Completed CFDCases ’ ;

BasePath="../../";

PathToWorkingDirectory=[BasePath , CFDCases, ’/Post/’ ,CFDCase, ' /post/’];
mkdir ([ PathToWorkingDirectory , ’/images/’])

if “stremp(CFDCase2,’’)

TimeStepNumbers=[TimeStepNumbersl , TimeStepNumbers2 | ; %add the 2 together
CFDCase=CFDCase2;
else
TimeStepNumbers=TimeStepNumbers]1 ;
CFDCase=CFDCasel ;
end
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[RegularNu , RegularXGrid , RegularYGrid ,D, TargetRe , UnsteadyTimeStep , HoverD , Regularyplus ,
NumberofHolesinMesh]=PlotNuSpanwiseAverageExperimental AndCFDUnsteady (CFDCasel ,
TimeStepNumbersl , CFDCase2, TimeStepNumbers2,’’ ,0,’x’,’0’ ,NumberofRegularlySpacedPointsX ,
NumberofRegularlySpacedPointsY , ’11_Hole_.CFD’, ’yes’, ’Center .-Row_Experimental ’) ;

Y%override a few plot parameters

title ([ 'Span_and.Time_Averaged.Nusselt .Number.—_Entire _Numerical_y/D’]) ;

ylim ([min(get (gca, ’YTick’)) (max(get(gca, YTick’))+5)]) %add a little space so the legend
isn 't on top of things

hgexport (gef ,[ PathToWorkingDirectory ,’/images/’ ,CFDCase, 'SpanwiseTimeAverageNu—’,num2str (min
(TimeStepNumbers) ) , ’—’ ,num2str (max( TimeStepNumbers)) ,’.eps’])

%pause

close all

Imow do countour plot of Nu

close all

[ContourFigure , ColorbarHandle]=PlotNuSurfaceCFD (squeeze (mean(RegularNu) ) ,RegularXGrid ,
RegularYGrid ,D, TargetRe ,0,100,50 ,HoverD , NumberofHolesinMesh) ;

Z%override a few wvalues to make the single hole come out better.

hgexport (gef ,[ PathToWorkingDirectory , ’/images/’ ,CFDCase, 'TimeAverageNu—’' ,num2str (min (
TimeStepNumbers) ) , '—’ ,num2str (max( TimeStepNumbers)) ,’.eps’])

Fpause

close all

Imow do countour plot of y+

close all

[ContourFigure , ColorbarHandle]=PlotNuSurfaceCFD (squeeze (max( Regularyplus)) ,RegularXGrid ,
RegularYGrid ,D, TargetRe ,0, ceil (max(max(max( Regularyplus)))*10) /10, ceil (max(max(max(
Regularyplus)))*10)/10/2,HoverD, NumberofHolesinMesh , "y+’) ;

hgexport (gef ,[ PathToWorkingDirectory , ’/images/’ ,CFDCase, ’TimeMaxyplus—
TimeStepNumbers) ) , '—’ ,num2str (max( TimeStepNumbers)) ,’.eps’])

Fpause

close all

’,num2str (min (

GenerateSurfaceNuAnimation (CFDCase, UnsteadyTimeStep , TimeStepNumbers , RegularNu , RegularXGrid ,
RegularYGrid ,D, TargetRe ,0,100,50 ,HoverD , NumberofHolesinMesh)

A.4.11 PlotMultipleCFDSliceValues.m

clc;

clear global;
clear all;
close all;

%add path for some other scripts used

addpath /home/andy/Desktop/CFD/CFDScripts/ %this is used because the run command
changes the path and messes all other paths defined up

addpath /home/andy/Desktop/CFD/Experimental/ExperimentalDataCopy/impingement/analysis/

addpath /home/andy/Desktop/CFD/Experimental/scripts/

%define the cases
%this is setup so it can be a copy and paste from PlotMultiple NuSpanwiseAverages.m, so some
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fields are not wused
Fkeep all lines commented except the case to process
UnsteadyCaseNumbersSelected={

%’ casenumberl ', timestepnumbersl , 'casenumber2’, timestepnumbres2 , 'CFD marker ’,’

Exzperimental Marker’, 'CFD label text’, experimental yes or mo’, ’experimental
label text’, NumberofRegularlySpacedPointsX , NumberofRegularlySpacedPointsY
% "CFD00487,227:260, CFD00517,261:727,’+7,’0’,’11 Hole — y/D=4.03 — Numerical’, 'no’, 'N
JA’, 650,100
% "CFD0052°,227:329, "CFD0059°,380:727,’z’, ’0’,’11 Hole — y/D=38 — Numerical ’, "yes’,’
Center Row Ezperimental’,650,100
% "CFD0046°,227:727,°°,0,°. 7, 0", Single Hole Repeating Case I — Numerical’, 'no’, 'N/A
7,65,100

"CFDO0045° ,227:727,7,0,’d’,’0’,’ Single _Hole_Repeating _Case_Il .—_Numerical’, 'no’,’
Center _Row_Experimental’,65,100
5

Inow, assign the wvalues from the selected case so the rest of the code doesn’t need to be
modified, and also so it stays more compact/understandable.

CFDCasel=UnsteadyCaseNumbersSelected {1};

TimeStepNumbersl=UnsteadyCaseNumbersSelected {2};

Y%note files are exported to CFDCase2’s path, also, both cases should have had the same time
step

CFDCase2=UnsteadyCaseNumbersSelected {3};

TimeStepNumbers2=UnsteadyCaseNumbersSelected {4};

%check to see if doing multiple cases
if “stremp(CFDCase2,’’)

TimeStepNumbers=[TimeStepNumbersl , TimeStepNumbers2 | ; %add the 2 together
CFDCase=CFDCase2;
else
TimeStepNumbers=TimeStepNumbersl1 ;
CFDCase=CFDCasel ;
end

Jneed to setup path so know where to save files to
CFDCases='Completed CFDCases ’;

BasePath="../../";

PathToWorkingDirectory =[BasePath , CFDCases, ' /Post/’ ,CFDCase, ' /post/’];
mkdir ([ PathToWorkingDirectory , ’/images/’])

%get the data

[Regularvx ,Regularvy , Regularvz , RegularTemperature , RegularPressure , RegularXGrid , RegularZGrid ,
D, TargetRe , UnsteadyTimeStep , RegularAbsolutePressure , NumberofHolesinMesh|=
GetUnsteadyRegularCFDSliceValues (CFDCasel , TimeStepNumbersl , CFDCase2, TimeStepNumbers2 , ’’
,0) 5

%plot the static pressure
PlotCFDSliceValues (squeeze (mean( RegularPressure)) ,RegularXGrid , RegularZGrid ,D, TargetRe , floor
(min(min(min( RegularPressure)))), ceil (max(max(max( RegularPressure)))) ,50, Static .Gauge.

Pressure_[Pa]’ ,NumberofHolesinMesh, 'no’);
hgexport (gef ,[ PathToWorkingDirectory ,’/images/’ ,CFDCase, ' TimeAverageStaticPressure—’ ,num2str
(min(TimeStepNumbers) ), '—’ ;num2str (max( TimeStepNumbers) ), ’.eps’])
Fpause
close all
%compute the worticity
for CurrentTimeStep=1:size (Regularvx,1)
RegularVorticity (CurrentTimeStep ,: ,:)=curl (RegularXGrid , RegularZGrid , squeeze (

Regularvx (CurrentTimeStep ,: ,:) ) ,squeeze (Regularvz (CurrentTimeStep ,: ,:) ));
end
%plot the worticity
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PlotCFDSliceValues (squeeze (mean( RegularVorticity)) ,RegularXGrid , RegularZGrid ,D, TargetRe
,—2500,2500,500, ’Normal_.Component_of.Vorticity.[1/s]’ ,NumberofHolesinMesh, 'no’);

hgexport (gef ,[ PathToWorkingDirectory , ’/images/’ ,CFDCase, ' TimeAverageVorticity—’ ,num2str (min (
TimeStepNumbers) ) , '—’ ,num2str (max( TimeStepNumbers) ) ,’.eps’])

Fpause

close all

%also generate an animation of wvorticity

GenerateCFDSliceValueAnimation (CFDCase, UnsteadyTimeStep , TimeStepNumbers , RegularVorticity ,
RegularXGrid , RegularZGrid ,D, TargetRe, —2500,2500,500, 'Normal .Component.of_Vorticity.[1/s]
’,’Vorticity > ,NumberofHolesinMesh , no )

close all

%plot the velocity magnitude

PlotCFDSliceValues(squeeze (mean(( Regularvx."2+Regularvz.”2).".5) ) ,RegularXGrid , RegularZGrid ,
D, TargetRe ,0,20,5, ' In_Plane.Velocity .Magnitude.[m/s]’,NumberofHolesinMesh) ;

hgexport (gef ,[ PathToWorkingDirectory ,’/images/’ ,CFDCase, 'TimeAverageVelocityMagnitude—",
num?2str (min( TimeStepNumbers) ) , '—’ ,num2str (max( TimeStepNumbers)) ,’.eps’])

Fpause

close all

%also generate an animation of velocity

GenerateCFDSliceValueAnimation (CFDCase, UnsteadyTimeStep , TimeStepNumbers , ( Regularvx.” 2+
Regularvz."2).".5, RegularXGrid , RegularZGrid ,D, TargetRe ,0,20,5, 'In_.Plane_Velocity.
Magnitude.[m/s]’,’ VelocityMagnitude’ ,NumberofHolesinMesh , >yes’)

close all

%plot the temperature

[ContourFigure]=PlotCFDSliceValues(squeeze (mean( RegularTemperature)) ,RegularXGrid ,
RegularZGrid ,D, TargetRe , floor (min(min(min( RegularTemperature)))/10)*10, ceil (max(max(max(
RegularTemperature)))/10)*10,10,  Static _Temperature.[K] > ,NumberofHolesinMesh , 'no’) ;

hgexport (gef ,[ PathToWorkingDirectory , ’/images/’ ,CFDCase, ’TimeAverageTemperature—’ ,num2str (
min( TimeStepNumbers) ) , ’—’ ,num2str (max( TimeStepNumbers) ), .eps’])

%now plot a close wup

xlim ([—.5 2.5])

ylim([=5 —4])

set (get (ContourFigure , ’CurrentAxes’), ’XGrid’,’on’, YGrid’, ’on’, ’XMinorTick’, ’on’, ’YMinorTick
’,’on’,’XTick’ ,[—-30:.5:30], ’YTick’,[—5:.25:20])

hgexport (gef ,[ PathToWorkingDirectory , ’/images/’ ,CFDCase, *TimeAverageTemperatureZoomed—",
num2str (min( TimeStepNumbers) ) , ’—’ ;num2str (max( TimeStepNumbers) ) ,’.eps’])

%pause

close all

%plot the density

%specific ideal gas constant for air

R=287; %J/(kg+K), anderson, modern compressible flow, page 21

RegularDensity=(RegularAbsolutePressure)./(R+«RegularTemperature) ;

PlotCFDSliceValues (squeeze (mean( RegularDensity)) ,RegularXGrid , RegularZGrid ,D, TargetRe, floor
(10+*min(min(min(RegularDensity)))) /10, ceil (10*max(max(max( RegularDensity))))/10,.1,’
Static.Density.[kg/m"3]’ ,NumberofHolesinMesh, 'no’) ;

hgexport (gef ,[ PathToWorkingDirectory , ’/images/’ ,CFDCase, ’TimeAverageDensity—’ ,num2str (min (
TimeStepNumbers) ) , '—’ ,num2str (max( TimeStepNumbers) ) ,’.eps’])

(1—min (min(min( RegularDensity ) ) ) /max(max(max( RegularDensity))))*100

Inow plot a close up

xlim ([—.5 2.5])

ylim ([=5 —4])

set (get (ContourFigure , ’CurrentAxes’),’XGrid’,’on’,’YGrid’, ’on’,’XMinorTick’, ’on’,’YMinorTick
’,’on’ ,’XTick’ ,[ —30:.5:30], YTick’ ,[ —5:.25:20])

hgexport (gef ,[ PathToWorkingDirectory ,’/images/’ ,CFDCase, 'TimeAverageDensityZoomed—
min( TimeStepNumbers) ), '—’ ,num2str (max( TimeStepNumbers) ), ’.eps’])

%pause

close all

’ snum?2str(

%plot the total pressure

gamma=1.4;
RegularSpeedofSound=(gammaxR+RegularTemperature).".5;
RegularMach=((Regularvx."2+ Regularvy. 2+ Regularvz."2).".5) ./ RegularSpeedofSound;
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RegularTotalPressure=(RegularAbsolutePressure).* (14 ((gamma—1)/2)«RegularMach."2) ." (gamma/ (
gamma—1)) ;

PlotCFDSliceValues (squeeze (mean( RegularTotalPressure /1000) ) ,RegularXGrid , RegularZGrid ,D,
TargetRe , floor (min(min(min( RegularTotalPressure /1000)))*10) /10, ceil (max(max(max(
RegularTotalPressure /1000)))*10) /10,.1, Total_Pressure_[kPa]’,NumberofHolesinMesh) ;

hgexport (gef ,[ PathToWorkingDirectory , ’/images/’ ,CFDCase, ' TimeAverageTotalPressure—’ ,num2str(
min( TimeStepNumbers) ) , '—’ ,num2str (max( TimeStepNumbers) ), ’.eps’])

%pause

close all

A.4.12 PlotMultipleNuSpanwiseAverages.m

clc;

clear global;
clear all;
close all;
tic;

%add path for some other scripts used

addpath /home/andy/Desktop/CFD/CFDScripts/ %this is used because the run command
changes the path and messes all other paths defined up

addpath /home/andy/Desktop/CFD/Experimental/ExperimentalDataCopy/impingement/analysis/

addpath /home/andy/Desktop/CFD/Experimental/scripts/

Fneed to setup path so know where to save files to
CFDCases='Completed CFDCases ’ ;

BasePath="../../";

PathToWorkingDirectory=[BasePath , CFDCases, ’/Post/SpanwiseAverages/’|;
mkdir ([ PathToWorkingDirectory ] )

%plot the unsteady cases
UnsteadyCaseNumbersSelected={

%’ casenumberl ’, timestepnumbersl , 'casenumber2’ timestepnumbres2, 'CFD marker ’,’
Exzperimental Marker’, 'CFD label text’, experimental yes or mo’, ’experimental
label text’, NumberofRegularlySpacedPointsX , NumberofRegularlySpacedPointsY

%make the case with the lowest z/D range last, also make the last case plot
experimental

"CFD0048 ,227:260, ’CFD0051° ,261:727,’+’ ,’0’,’11_Hole_.—_y/D=4.03 _.—_Numerical ’, ’no’ ,’N
/A’ 650,100

"CFD0052’ ,227:329, ’CFD0059° ,330:727,’x’,’0’,’11_Hole_—_y/D=3_—_Numerical ’, "yes ’,’
Center _Row_Experimental > ;650,100

"CFDO0046’ ,227:727,77,0,7.7,’0",’Single _Hole_Repeating_Case_I_.—_Numerical’, 'no’, ’N/A”’
,65,100
"CFDO0045° ,227:727,°’ ,0,’d’,’0’,’Single_Hole_Repeating._Case_II _—_Numerical’,’no’ ,’

Center _Row_Experimental’ ;65,100

}s

for CurrentCase=1:size (UnsteadyCaseNumbersSelected ,1)

clear RegularNu; %clear out some data from memory. wvariable will just be
overwritten anyway on the mnext line, but this saves matlab from putting data
into virtual memory (if ram is exzausted) before it is overwritten

[RegularNu , RegularXGrid , RegularYGrid ,D, TargetRe , UnsteadyTimeStep , HoverD, ™,
NumberofHolesinMesh]=PlotNuSpanwiseAverageExperimental AndCFDUnsteady (
UnsteadyCaseNumbersSelected { CurrentCase , 1}, UnsteadyCaseNumbersSelected{
CurrentCase ,2} , UnsteadyCaseNumbersSelected { CurrentCase ,3},
UnsteadyCaseNumbersSelected { CurrentCase ,4},’’ ,0,UnsteadyCaseNumbersSelected{
CurrentCase ,5}, UnsteadyCaseNumbersSelected { CurrentCase ,6} ,
UnsteadyCaseNumbersSelected{ CurrentCase ,10},[0.0047625% —1.5+0.0047625%1.5%2/
UnsteadyCaseNumbersSelected { CurrentCase ,11}:0.0047625%1.5%2/
UnsteadyCaseNumbersSelected{ CurrentCase ,11}:0.0047625%1.5 —-0.0047625%1.5%2/
UnsteadyCaseNumbersSelected { CurrentCase ,11}], UnsteadyCaseNumbersSelected {
CurrentCase ,7}, UnsteadyCaseNumbersSelected { CurrentCase ,8},
UnsteadyCaseNumbersSelected { CurrentCase ,9}) ;

ylim ([0 65]) %add a little space so the legend isn’t on top of things

hgexport (gecf ,[ PathToWorkingDirectory , ’SpanwiseAverages—’ ,num2str( CurrentCase) , =7,
num?2str (min( UnsteadyCaseNumbersSelected{CurrentCase ,2}) ), ’—’ ,num2str (max(
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UnsteadyCaseNumbersSelected { CurrentCase ,2}) ), ’—’ ,num2str (min (
UnsteadyCaseNumbersSelected{ CurrentCase ,4}) ), ’—’ ,num2str (max(
UnsteadyCaseNumbersSelected { CurrentCase ,4}) ), .eps’])

end

Zylim ([min(get(gca, YTick’)) (maz(get(gca, YTick’))+15)]) %add a little space so the
legend isn’t on top of things

%plot the steady cases

%although there are mot timesteps associated, the file mame is based on the last unsteady
case plotted s time step.
CaseNumbersSelected={
%’ casenumber ’, 'CFD marker ’, ’'Experimental Marker’, 'CFD Label Text’, experimental yes
or mothing ’, "Exzperimental Label Text’, GridPoints, NuFilenamesuffiz’,’
SliceFilenamesuffixz ', NumberofRegularlySpacedPointsX ,
NumberofRegularlySpacedPointsY
"CFDO0055’ ,’p’,’0’,’Single_Hole .CFD_.—_.12.6 _.million._.points.—_.1.3"2x’,’no’, ’Center._Hole
-Experimental’ ,;12.6,’—SecondOrderSteadyShouldBeConverged—HeatedSurface.csv’,6 '—
SecondOrderSteadyShouldBeConverged—CenterPlane.csv’,65,100

};

for CurrentCase=1:size (CaseNumbersSelected ,1)

[RegularNu (CurrentCase ,: ,:) ,RegularXGrid , RegularYGrid , TargetRe ,D,HoverD, ™,
NumberofHolesinMesh]=PlotNuSpanwiseAverageExperimental AndCFD ( CaseNumbersSelected
{CurrentCase,1},CaseNumbersSelected { CurrentCase ,2} ,CaseNumbersSelected{
CurrentCase ,3},CaseNumbersSelected{CurrentCase ,10} ,CaseNumbersSelected {
CurrentCase ,11},CaseNumbersSelected{CurrentCase ,8} ,CaseNumbersSelected {
CurrentCase ,4},CaseNumbersSelected{CurrentCase ,5} , CaseNumbersSelected {
CurrentCase ,6}) ;

ylim ([0 75]) %add a little space so the legend isn’t on top of things

hgexport (gef ,[ PathToWorkingDirectory , ’SpanwiseAverages—’ ,num2str( CurrentCase+size (
UnsteadyCaseNumbersSelected ,1) ), ’—’ ,num2str (min( UnsteadyCaseNumbersSelected {size
(UnsteadyCaseNumbersSelected ,1) ,2})),’—’ ,num2str (max( UnsteadyCaseNumbersSelected
{size (UnsteadyCaseNumbersSelected ,1) ,2})) ,num2str (min(
UnsteadyCaseNumbersSelected{size (UnsteadyCaseNumbersSelected ,1) ,4})), ’—’ ,num2str
(max(UnsteadyCaseNumbersSelected {size (UnsteadyCaseNumbersSelected ,1) ,4})),’ . eps’

1)

end
hours=toc /3600

A.4.13 PlotNuSpanwiseAverageExperimental AndCFD.m

function [RegularNu,RegularXGrid, RegularYGrid, TargetRe ,D,HoverD, Regularyplus ,
NumberofHolesinMesh]=PlotNuSpanwiseAverageExperimentalAndCFD (CFDCase, CFDMarker,
ExperimentalMarker , NumberofRegularlySpacedPointsX , NumberofRegularlySpacedPointsY ,
DataFileSuffix ,LabelTextCFD , ExperimentalYes , LabelTextExperimental)

%main reason this function is used is because it automatically clears all variables
after plotting, and it truncates the ezperimental data to the range of the CFD
data if not doing all holes.

%it also automatically finds the correct experimental case to compare to

%if want this script to compare as a precentage, mneed to add another imput which is
the raw data to compare to

I T6 26760 e e e e e e e e e a6 e e e e e e e 6 e e T e e Te e e ieeo

%process the CFD data and make it a regularly spaced grid.

[RegularNulnstant , RegularXGrid , RegularYGrid ,D, TargetRe , ExperimentalCaseNumber ,
RawExperimentalDataPath , CaseListDataFile ,” ,HoverD, RegularyplusInstant ,
NumberofHolesinMesh]=GetRegularCFDSurfaceNu (CFDCase,
NumberofRegularlySpacedPointsX , NumberofRegularlySpacedPointsY , DataFileSuffix);

RegularNu=RegularNulnstant (RegularXGrid , RegularYGrid) ;

Regularyplus=RegularyplusInstant (RegularXGrid , RegularYGrid) ;

SpanwiseAverageNu=mean(RegularNu) ;

MinXDSingleHole=round (min (min(RegularXGrid))/Dx10) /10; %need to round because round

off error makes the grid points not exactly and also GetRegularCFDSurfaceNu
throws out the end points
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MaxXDSingleHole=round (max(max( RegularXGrid) ) /D%10) /10;

PlotNuSpanwiseAverage (SpanwiseAverageNu , RegularXGrid (1,:) ,D, TargetRe , MinXDSingleHole
, MaxXDSingleHole , CFDMarker , LabelTextCFD , [ ' .—_Re=",thousands (TargetRe) |)

if strcmp(ExperimentalYes, 'yes’)

%process the raw experimental data, truncate it, and plot, and add an extra
label.

[OverallAverageNu , TargetRe , XExperimental , YExperimental ,D,MinXD,MaxXD,
MeasurementDomainHeight , TimeAverageNuExperimental ,Nu]=
ProcessDatausingPlotFunction (ExperimentalCaseNumber ,
RawExperimentalDataPath , CaseListDataFile , +7);

TimeAverageNuExperimentallnterp=interp2 (XExperimental , YExperimental ,
TimeAverageNuExperimental , XExperimental , RegularYGrid (:,1)); Z%use an
interpolating function to upsample the experimental data to the
numerical data and then truncate to the region of interest.

SpanAndTimeAverageNuExperimentallnterp=mean( TimeAverageNuExperimentallnterp)

PlotNuSpanwiseAverage (SpanAndTimeAverageNuExperimentallnterp , XExperimental ,D
, TargetRe , MinXDSingleHole , MaxXDSingleHole , ExperimentalMarker ,
LabelTextExperimental ,[ ’.—_Re=’,thousands(TargetRe)])

end

%override a few plot parameters for the single hole case
global SpanwiseAverageFigure

if NumberofHolesinMesh==1

set (get (SpanwiseAverageFigure , ’CurrentAxes’),’XGrid’,’on’,’YGrid’, ’on’,’
XMinorTick’, ’on’, ’YMinorTick’,’on’, XTick’ ,[ —1.5:.5:1.5])

set (SpanwiseAverageFigure, ’OuterPosition’,[30 30 622 650])

end
end

A.4.14 PlotNuSpanwiseAverageExperimental AndCFDUnsteady.m

function [RegularNu, RegularXGrid ,RegularYGrid ,D, TargetRe, UnsteadyTimeStep , HoverD,
Regularyplus , NumberofHolesinMesh]|=PlotNuSpanwiseAverageExperimental AndCFDUnsteady (
CFDCasel , CFDCaselTimeSteps , CFDCase2, CFDCase2TimeSteps , CFDCase3 , CFDCase3TimeSteps ,
CFDMarker, ExperimentalMarker , RegularlySpacedPointsX , RegularlySpacedPointsY , LabelTextCFD ,
ExperimentalYes , LabelTextExperimental)

%main reason this function is used is because it automatically clears all variables
after plotting, and it truncates the experimental data to the range of the CFD
data if not doing all holes.

%it also automatically finds the correct experimental case to compare to

%if want this script to compare as a precentage, mneed to add another imput which is
the raw data to compare to

Y0676 % e 6 e e e e Ve e e a6 e e e e e e e e e e ie e e Ve e e e et
%process the CFD data and make it a regularly spaced grid. count down in for loops
so everything goes faster because memory is already preallocated.

%do case 1
for x=size (CFDCaselTimeSteps,2):—1:1
disp ([ ’Current .Time._Step _Number_=_’ ,num2str (CFDCaselTimeSteps(x))]) ;
[RegularNulnstant , RegularXGrid , RegularYGrid ,D, TargetRe ,
ExperimentalCaseNumber , RawExperimentalDataPath , CaseListDataFile ,
UnsteadyTimeStep , HoverD, RegularyplusInstant , NumberofHolesinMesh]=
GetRegularCFDSurfaceNu (CFDCasel , RegularlySpacedPointsX
RegularlySpacedPointsY ,[ "—~HeatedSurface—SecondOrderUnSteady—1—" ,num2str(
CFDCaselTimeSteps(x), %05.0f°),  .csv’]);
RegularNu(x,: ,:)=RegularNulnstant (RegularXGrid , RegularYGrid) ;
Regularyplus(x,:,:)=RegularyplusInstant (RegularXGrid , RegularYGrid) ;
end

%do case 2
if “stremp(CFDCase2,’’)
for x=size (CFDCase2TimeSteps,2):—1:1
disp ([ ’Current .Time_Step _Number_=_.’ ,num2str (CFDCase2TimeSteps (x))]) ;
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[RegularNulnstant , RegularXGrid , RegularYGrid ,D, TargetRe,
ExperimentalCaseNumber , RawExperimentalDataPath , CaseListDataFile ,
UnsteadyTimeStep ,HoverD , RegularyplusInstant , NumberofHolesinMesh
]=GetRegularCFDSurfaceNu (CFDCase2, RegularlySpacedPointsX ,
RegularlySpacedPointsY ,[ '—HeatedSurface—SecondOrderUnSteady—1—",
num?2str (CFDCase2TimeSteps(x) ,’%05.0f”),’ .csv’]);

RegularNu (x+size (CFDCaselTimeSteps,2) ,:,:)=RegularNulnstant (
RegularXGrid , RegularYGrid) ;

Regularyplus (x+size (CFDCaselTimeSteps,2) ,:,:)=RegularyplusInstant (
RegularXGrid , RegularYGrid) ;

end

end

%never added code for case 3

TimeAverageNu=squeeze (mean( RegularNu) ) ;

SpanwiseTimeAverageNu=mean( TimeAverageNu) ;

%assume all time steps and cases should have the same grid

MinXDSingleHole=round (min(min(RegularXGrid)) /Dx10) /10; %need to round because round

off error makes the grid points not ezactly and also GetRegularCFDSurfaceNu
throws out the end points

MaxXDSingleHole=round (max(max( RegularXGrid) ) /D%10) /10;

PlotNuSpanwiseAverage (SpanwiseTimeAverageNu , RegularXGrid (1,:) ,D, TargetRe,
MinXDSingleHole , MaxXDSingleHole , CFDMarker, LabelTextCFD ,[ >.—_Re=",thousands (
TargetRe) ])

if strcmp(ExperimentalYes, ’yes’)

%process the raw experimental data, truncate it, and plot, and add an extra
label.

addpath ../../ExperimentalDataCopy/impingement/analysis/ Zneeded to
use the process data script to get experimental data.

[OverallAverageNu , TargetRe , XExperimental , YExperimental ,D, MinXD,MaxXD,
MeasurementDomainHeight , TimeAverageNuExperimental ,Nu]=
ProcessDatausingPlotFunction (ExperimentalCaseNumber ,
RawExperimentalDataPath , CaseListDataFile , +7);

TimeAverageNuExperimentallnterp=interp2 (XExperimental , YExperimental ,
TimeAverageNuExperimental , XExperimental , RegularYGrid (:,1)); %use an
interpolating function to upsample the experimental data to the
numerical data and then truncate to the region of interest.

SpanAndTimeAverageNuExperimentallnterp=mean( TimeAverageNuExperimentallnterp)

PlotNuSpanwiseAverage (SpanAndTimeAverageNuExperimentallnterp , XExperimental ,D
, TargetRe , MinXDSingleHole , MaxXDSingleHole , ExperimentalMarker ,
LabelTextExperimental ,[ ’.—_Re=’,thousands (TargetRe)])

end

%override a few plot parameters for the single hole case

global SpanwiseAverageFigure

if NumberofHolesinMesh==1

set (get (SpanwiseAverageFigure, ’CurrentAxes’), ’XGrid’,’on’,’YGrid’,’on’,’
XMinorTick’, ’on’, ’YMinorTick’,’on’,’XTick’ ,[ —=1.5:.5:1.5])

set (SpanwiseAverageFigure, ’OuterPosition’,[30 30 622 650])

end

end

A.4.15 PlotNuSurfaceCFD.m

function [ContourFigure, ColorbarHandle]=PlotNuSurfaceCFD (Nu, RegularXGrid , RegularYGrid ,D,
TargetRe , MinNu,MaxNu, NuStep , HoverD , NumberofHolesinMesh , ContourScaleLabel , Time)

MinXD=round (min (min(RegularXGrid) ) /D%10) /10; %need to round because round off
error makes the grid points not exactly and also GetRegularCFDSurfaceNu throws
out the end points

MaxXD=round (max (max( RegularXGrid) ) /Dx10) /10;
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end

MinYD=round (min (min(RegularYGrid) ) /D%10) /10;
MaxYD=round (max (max( RegularYGrid) ) /Dx10) /10;

if “exist(’ContourScaleLabel’,’var’)
ContourScaleLabel="Nu’;
end
if exist(’Time’,’ var’)
[ContourFigure , ColorbarHandle]=PlotNuContour (Nu, RegularXGrid (1,:) ,
RegularYGrid (:,1) ,D, TargetRe ,MinXD,MaxXD, MinYD, MaxYD, MinNu, MaxNu, NuStep ,
HoverD, ContourScaleLabel , Time) ;
else
[ContourFigure , ColorbarHandle]=PlotNuContour (Nu, RegularXGrid (1,:) ,
RegularYGrid (:,1) ,D, TargetRe ,MinXD,MaxXD, MinYD,MaxYD, MinNu, MaxNu, NuStep ,
HoverD, ContourScaleLabel) ;
end

if NumberofHolesinMesh==1
set (get (ContourFigure, ’CurrentAxes’) ,’XGrid’,’on’,’YGrid’, ’on’, ’XMinorTick ’,
>on’,’YMinorTick’,’on’,’XTick’ ,[—-1.5:.5:1.5] ,’YTick’ ,[-1.5:.5:1.5])
%make the figure a little wider since the label is cut off
CurrentDimensions=get ( ContourFigure, ’OuterPosition’);
CurrentDimensions (3)=CurrentDimensions (3) +200;
set (ContourFigure, ’OuterPosition’,CurrentDimensions) ;
elseif NumberofHolesinMesh==11
set (get (ContourFigure, ’CurrentAxes’),’XGrid’,’on’,’YGrid’, ’on’, ’XMinorTick ’,
>on’,’YMinorTick’,’on’,’XTick’ ,[—15:3:15], ’YTick’ ,[ —1.5:1.5:1.5])
end

A.4.16 VectorProfile.m

function VectorProfile (Regularvx ,Regularvz , RegularXGrid , RegularZGrid , XMinVector , XMaxVector,

XCount , ZMinVector , ZMaxVector , ZCount ,D, ScaleFactor , NumberofHolesinMesh)

%display velocity wvectors inside a rectangle with a given spacing.

XResolution=(XMaxVector—XMinVector) /XCount;
if XResolution==
RegularXVector=XMinVector;
else
RegularXVector=XMinVector: XResolution : XMaxVector;
end
ZResolution=(ZMaxVector—ZMinVector) /ZCount ;
if ZResolution==0
RegularZVector=ZMinVector;
else
RegularZVector=ZMinVector: ZResolution : ZMaxVector;
end
[RegularXGridVector , RegularZGridVector]=meshgrid ( RegularXVector , RegularZVector) ;

RegularXGridVectorReshaped=reshape (RegularXGridVector ,1,[]) ;

RegularZGridVectorReshaped=reshape(RegularZGridVector ,1,[]) ;

RegularvxReshaped=reshape (interp2 (RegularXGrid , RegularZGrid , Regularvx ,
RegularXGridVector , RegularZGridVector) ,1,[]);

RegularvzReshaped=reshape(interp2 (RegularXGrid , RegularZGrid , Regularvz ,
RegularXGridVector , RegularZGridVector) ,1,[]);

%undo meshgrid and do some other stupid stuff to setup some other wvalues so can wuse
with InsideTheLowerGridSingleHole and InsideThePressureChamberGridli1Hole and
InsideTheLowerGridl1Hole

X=reshape (RegularXGrid ,1,[]) ;

Z=reshape (RegularZGrid ,1,[]) ;

X(find (isnan (reshape(Regularvx ,1,[]))

Z(find (isnan (reshape(Regularvx ,1,[]))

XMin=min (X) ;

))
)

):

0;
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end

A.4.17

function
INorON)

end

XMax=max (X) ;
ZMin=min(Z) ;
ZMax=max(Z) ;

%determine whether points are inside of the mesh or not
%call code that defines the perimeter of the mesh
if NumberofHolesinMesh==
InsideTheLowerGridSingleHole
%since there is mo pressure chamber for this case, just set the wvalues to a
scalar zero
INPressureChamber=0;
ONPressureChamber=0;
elseif NumberofHolesinMesh==11
InsideTheLowerGridl1Hole
InsideThePressureChamberGridl1Hole
%see if in the pressure chamber
[INPressureChamber , ONPressureChamber]=inpolygon (RegularXGridReshapedVector ,
RegularZGridReshapedVector ,InsideThePressureChamberGrid (:,1) ,
InsideThePressureChamberGrid (:,2));
end

%see if in the lower grid
[INLower ,ONLower]=inpolygon (RegularXGridVectorReshaped , RegularZGridVectorReshaped ,
InsideTheLowerGrid (:,1) ,InsideTheLowerGrid (:,2) );

%now add both together
INorON=INLower+ONLower+INPressureChamber+ONPressureChamber ;

RegularvxReshaped (find (INorON==0))=NaN;
RegularvzReshaped (find (INorON==0) )=NalN;

Inow remove all NaN because quiver will put a dot for NaN
OriginalISNANTest=(isnan (RegularvxReshaped )==0) | (isnan (RegularvzReshaped )==0);
RegularXGridVectorReshaped=RegularXGridVectorReshaped (OriginalISNANTest) ;
RegularZGridVectorReshaped=RegularZGridVectorReshaped (OriginalISNANTest) ;
RegularvxReshaped=RegularvxReshaped (OriginalISNANTest) ;
RegularvzReshaped=RegularvzReshaped (OriginalISNANTest ) ;

Inow draw all arrows.
quiver (RegularXGridVectorReshaped /D, RegularZGridVectorReshaped /D, RegularvxReshaped
ScaleFactor ,RegularvzReshaped*ScaleFactor ,0,’b’)

ValuesInGrid.m
[RegularParameterMatrix]=ValuesInGrid (RegularParameter , RegularXGrid , RegularZGrid ,
%need to convert all values outside of the mesh to NaN so the countour plot doesn’t
show them
RegularParameterReshaped=reshape(RegularParameter (RegularXGrid , RegularZGrid) ,1,[]);
RegularParameterReshaped (find (INorON==0) )=NaN;
RegularParameterMatrix=reshape (RegularParameterReshaped , size (RegularParameter (
RegularXGrid , RegularZGrid)) ) ;
%done converting all values to NaN outside of th mesh

A.4.18 InsideTheLowerGridSingleHole.m

hole=1,;

InsideTheLowerGrid=|

XMin,max(Z ( find (X==XMin) ) )
(min (X( find (Z=—ZMax) ) )4Dx
(min (X (find (Z=—ZMax) ) )4+D=*
(min (X (find (Z=—ZMax) ) )4Dx*
(min (X( find (Z=—ZMax) ) )4Dx

hole —2)%3+43)
hole —2)%3+3)
hole —2)%3+4)
hole —2)%3+4)

;max(Z(find (X=XMin) ) )
, ZMax
,ZMax
;max(Z(find (X=XMin) ) )

AAAA
—~~ e~
——
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XMax,max(Z(find (X==XMin) ) )
XMax, ZMin

XMin, ZMin

15

A.4.19 InsideTheLowerGridl1Hole.m

hole=1,;

15

195

Z%parameters that define the border of the grid. (11 hole,

InsideTheLowerGrid=|
XMin,max(Z(find (X=XMin) ) )
15

InsideTheLowerGrid=[InsideTheLowerGrid ,
(min (X (find (Z<—.5+D&Z>—1.5%D) ) )4Dx* (( hole —2)*3+3)) ,max(
(min(X(find (Z<—.5+D&Z>—1.5%D) ) )4Dx* (( hole —2)*3+3)) ,0
(min (X (find (Z<—.5+«D&Z>—1.5%D) ) )4Dx* (( hole —2)%3+4)) ,0
(min(X(find (Z<—.5+xD&Z>—1.5%D) ) )4+Dx* (( hole —2)*3+4)) ,max(Z
15

InsideTheLowerGrid=[InsideTheLowerGrid ,
(min(X(find (Z<—.5+xD&Z>—1.5%D) ) )4+Dx* (( hole —2)*3+3) ) ,max(Z
(min(X(find (Z<—.5+xD&Z>—1.5%D) ) )+Dx* (( hole —2)%3+3)) ,0
(min(X(find (Z<—.5+xD&Z>—1.5%D) ) )+Dx* (( hole —2)*3+4)) ,0
(min(X(find (Z<—.5xD&Z>—1.5+D) ) )4+Dx* (( hole —2)*3+4) ) ,max(Z
]7

InsideTheLowerGrid=[InsideTheLowerGrid ,
(min(X(find (Z<—.5xD&Z>—1.5+D) ) )4+Dx* (( hole —2)*3+3)) ,max(
(min(X(find (Z<—.5+xD&Z>—1.5%D) ) )+Dx* (( hole —2)%3+3)) ,0
(min(X(find (Z<—.5+xD&Z>—1.5%D) ) )+Dx* (( hole —2)%3+4)) ,0
(min(X(find (Z<—.5+xD&Z>—1.5%D) ) )4+Dx* (( hole —2)*3+4)) ,max(Z
15

InsideTheLowerGrid=[InsideTheLowerGrid ,
(min(X(find (Z<—.5+xD&Z>—1.5%D) ) )4+Dx* (( hole —2)*3+3)) ,max(Z
(min(X(find (Z<—.5xD&Z>—1.5«D) ) )+Dx* (( hole —2)%3+3)) ,0
(min(X(find (Z<—.5+xD&Z>—1.5%D) ) )+Dx* (( hole —2)*3+4)) ,0
(min(X(find (Z<—.5xD&Z>—1.5+D) ) )4+Dx* (( hole —2)*3+4) ) ,max(Z
I

InsideTheLowerGrid=[InsideTheLowerGrid ,
(min(X(find (Z<—.5xD&Z>—1.5+D) ) )4+Dx* (( hole —2)*3+3) ) ,max(Z
(min (X (find (Z<—.5+«D&Z>—1.5%D) ) )4Dx* (( hole —2)*3+3)) ,0
(min (X (find (Z<—.5+«D&Z>—1.5%D) ) )4Dx* (( hole —2)%3+4)) ,0
(min(X(find (Z<—.5+xD&Z>—1.5%D) ) )4+Dx* (( hole —2)*3+44)) ,max(Z
15

InsideTheLowerGrid=[InsideTheLowerGrid ,
(min(X(find (Z<—.5+xD&Z>—1.5%D) ) )4+Dx* (( hole —2)*3+43) ) ,max(Z
(min (X (find (Z<—.5+D&Z>—1.5%D) ) )4Dx* (( hole —2)%3+3)) ,0
(min(X(find (Z<—.5+«D&Z>—1.5%D) ) )4Dx* (( hole —2)%3+4)) ,0
(min(X(find (Z<—.5xD&Z>—1.5+D) ) )4+Dx* (( hole —2)*3+4) ) ,max(Z
]7

InsideTheLowerGrid=[InsideTheLowerGrid ,
(min(X(find (Z<—.5xD&Z>—1.5+D) ) )4+Dx* (( hole —2)*3+3)) ,max(
(min (X (find (Z<—.5+«D&Z>—1.5%D) ) )4Dx* (( hole —2)%3+3)) ,0
(min (X (find (Z<—.5+«D&Z>—1.5%D) ) )4Dx* (( hole —2)%3+4)) ,0
(min(X(find (Z<—.5+D&Z>—1.5%D) ) )4Dx* (( hole —2)*3+4)) ,max(Z

no pressure chamber)

Z(find (X==XMin) ) )

(find (X=XMin) ) )

(find (X=XMin) ) )

(find (X==XMin) ) )

Z(find (X==XMin) ) )

(find (X=XMin) ) )

(find (X=XMin) ) )

(find (X==XMin) ) )

(find (X==XMin) ) )

(find (X=XMin) ) )

(find (X=XMin) ) )

(find (X==XMin) ) )

(find (X==XMin) ) )

(find (X=XMin) ) )
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hole=8,;

InsideTheLowerGrid=[InsideTheLowerGrid ,
(min (X (find (Z<—.5+«D&Z>—1.5%D) ) )4Dx* (( hole —

hole=9;

(min(X(find (Z<—.5+D&Z>—1.5%D) )
(min (X (find (Z<—.5+D&Z>—1.55%D) ) )+Dx* (
(min(X(find (Z<—.5+D&Z>—1.5%D) )

15

4D (

InsideTheLowerGrid=[InsideTheLowerGrid ,

hole=10;

(min(X(find (Z<—.5+D&Z>—1.5%D) ) )4Dx* (( hole —2
(min(X(find (Z<—.5+D&Z>—1.5%D) )
(min(X(find (Z<—.5+D&Z>—1.5%D) ) )+Dx
(min(X(find (Z<—.5+D&Z>—1.5%D) )

B

InsideTheLowerGrid=[InsideTheLowerGrid ,
(min (X(find (Z<—.5+D&Z>—1.5%D) ) )4+Dx* (

hole=11;

(min(X(find (Z<—.5+D&Z>—1.5%D) )
(min (X(find (Z<—.5+D&Z>—1.55D) ) )+D* (
(min(X(find (Z<—.5+D&Z>—1.5+D) )

15

4D (

4D (

InsideTheLowerGrid=[InsideTheLowerGrid ,
(min(X(find (Z<—.5+D&Z>—1.5%D) ) )4Dx* (( hole —

(min(X(find (Z<—.5+D&Z>—1.5%D) )
(min(X(find (Z<—.5+D&Z>—1.5xD) ) )+Dx* (
(min(X(find (Z<—.5+D&Z>—1.5%D) )

XMax, max (Z
XMax, ZMin
XMin, ZMin
I5

(find (X=XMin) ) )

)4Dx ((hole —

V4D ( E hole —2
((
)4D* ((hole —2

(hole —2)+5+3)) max(Z
(hole ~2)+3+3)) .0
(hole —2)%3+4+4)) ,0
(hole —2)%3+4))
)<3+3) ) max(
)*3+3)) ,0
hole —2)x3+4)) ,
)*x3+4)) ,max(Z
(hole —2)%3+43)) ,max(Z
(hole —2)%3+3)) ,0
(hole —2)*3+4)) ,0
(hole —2)*3+4)) ,max
2)%3+3)) ,max(
2)*343)) ,0
hole —2)%3+4)) ,0
2)*%3+4)) ,max(Z

(

)4D* ((hole —
(
(

)4Dx ((hole —

A.4.20 InsideThePressureChamberGridl1Hole.m

%parameters that define
InsideThePressureChamberGrid=
min (X (find (Z>.5+D&Z<1.5%D)
min (X (find (Z>.5+D&Z<1.5%D)

(Z>.5+D&Z <1.5%D)
max (X(find (Z>.5+xD&Z<1.5%D)

(
max (X (find
(

] Rl

[

)) 0
)) ,ZMax
)) ,ZMax
)) 0

the border of the grid.

A.4.21 ReadCFDCaseListSpreadsheet.m

PathToCFDCaseListDataFilePrefix=[BasePath,
PathToCFDCases=[BasePath , CFDCases,

%convert ods file

%first

ARE

to tab delimited text file

clear out an environmental variable matlab sets

(11 hole,

"CFDCaseList ’ | ;

LD_LIBRARY_PATH original=getenv ( 'LD_LIBRARY PATH") ;

setenv (’LD_LIBRARY . PATH’ ,’ ") ;
lunoconv —listener&
pause (5)

Inow change the environmental variable
setenv ('LD_LIBRARY PATH’ ,LD_LIBRARY_PATH original)
lunoconv.—f_csv.—stdout._
~"’s/"//g’>’>" ,PathToCFDCaseListDataFilePrefix ,

eval ([’

back
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>, PathToCFDCaseListDataFilePrefix ,

Totxt])

(find (X==XMin) ) )

;max(Z(find (X=XMin) ) )

Z(find (X==XMin) ) )

(find (X=XMin) ) )

(find (X==XMin) ) )

(Z(find (X=XMin)))

Z(find (X==XMin) ) )

(find (X=XMin) ) )

no pressure chamber)

’.ods|sed.’

that messes this program up

s/,/\t/g’ " |sed
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%read additional descriptive data for this run

filehandle=fopen ([ PathToCFDCaseListDataFilePrefix, ’.txt']) ;

JInote: if the number of delimiters is less than the total number of fields ,

Zmatlab just breaks the current row at the last defined delimiter

%such that the nezt field is on a new Tow.

Z%because of this, extra delmiters are put in so that if a new field is

%added, it will still work okay

CFDCaseListData = textscan (filehandle , %s_%s %s %s -%s -Tos -Jos Yos Tos “Tos -Tos -Tos -Tos -Tos -Tos -Tos Tos -To
s Y08 Tos Tos Tos Tos Fos Fos Fos FTos Tos Tos Tos Tos Tos Tos Tos Tos Tos Tos Tos ’,’ CollectOutput’,1,°
delimiter’,’\t’);

fclose(filehandle); %close file

CFDCaseListData=CFDCaseListData{1,1}; %simplify variable a little

%define wvariable and column mappings

CFDCaseListDataVariables={

’Field _.Name’ , ’Column._Number’,’ Units’,’String?’
’CFDCaseNumber’ ,1,’’ , 'no’
’ExperimentalCaseNumber’ ,2,’ 7 "yes
>CFDCaseToContinue’ ,3,’ "’ , yes’
’CaseFileName’ ,4,’’ , ’yes’
’DataFileName’ ;5,’ "’  "yes’

% "FilesStillOnHawkWorkspace ’,6, 77, "yes’
’NumberofHolesinMesh’ ,6,’’, 'no’
’Unsteady ’ ,7, ", yes’
’NumberofCPUs’ ,8,’’, 'no’
>WallTime’ ;9,7 , ’yes’
"NoEnergylterations’ ;10,’’, yes’
"FirstOrderIterations’,11,’ ",  yes’
’SecondOrderIterations’,12,’’  ’yes
’NumberOfFormerTimeStepsToSave’ ,13,’’, ’no’
’UnsteadyTimeSteps’ ,14,’ 7, yes’
’UnsteadyTimeStep’ ,15,’ 7, yes’
’ResetUnsteadyStatistics’,16,’’, yes’
>WallConduction’ ,17,’’ | "yes”’
’HeatedSurfaceZonel ’ ;18,7 ’yes
’HeatedSurfaceZone2’,19,’’  ’yes
’UnHeatedBottomSurfaceZone’ ,20,’’, yes’
’InletZone’ ,21,’ 7, yes’
’OutletZone’ ,22,’ 7  ’yes’
’InteriorZone’ ,23,’’  ’yes
’JetCore’ ,24,° 7 ’yes’
"TopWallsZone’ ,25,° 7, ’yes’
’FirstRepeatingBoundary’,26,’’, yes
’SecondRepeatingBoundary ’ ,27,’ "’ yes’
"InletTurbulentIntensity ’,28,’ 7, yes’
’LinePlotCoordinatesStart’ ,29, 'mm’, 'no’
’LinePlotCoordinatesStop ’,30, 'mm’, 'no’
’MaxPlotTemperature’ ,;31, 'K’ , ’yes’
’MinPlotTemperature’ ;32, 'K’ , ’yes’

s

)

)

)

)

%double check wvalues are mapped properly
disp(’-")
disp ( ’Check._and _make_sure_each_field _is _properly _mapped_to_the_correct._variable )
for CFDCaseListDataVariableCount=2:size (CFDCaseListDataVariables ,1)
%double check wvalues are mapped properly

disp ([ CFDCaseListDataVariables{ CFDCaseListDataVariableCount ,1},’ [,
CFDCaseListDataVariables{ CFDCaseListDataVariableCount ,3}, ’] <—>..7,
CFDCaseListData{1l, CFDCaseListDataVariables{ CFDCaseListDataVariableCount ,2}}]) ;
end
disp(’'please_wait’)

for CFDCaseListDataCount=2:size (CFDCaseListData,1)
if strcmp(CFDCaseListData( CFDCaseListDataCount,1) ,CFDCase)
for CFDCaseListDataVariableCount=2:size (CFDCaseListDataVariables,1)
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end
end
end

if strcmp(CFDCaseListDataVariables{ CFDCaseListDataVariableCount ,4},’
no’)
eval ([CFDCaseListDataVariables{ CFDCaseListDataVariableCount
,1}, ’=str2num (CFDCaseListData{ CFDCaseListDataCount ,
CFDCaseListDataVariables{ CFDCaseListDataVariableCount

2315715

else
eval ([CFDCaseListDataVariables{ CFDCaseListDataVariableCount
,1}, ’=CFDCaseListData{ CFDCaseListDataCount ,
CFDCaseListDataVariables{ CFDCaseListDataVariableCount
2110 ])
end

07070707070, 0707070707070,

070707070707070707070707070707070,

0/0/0/07070/07/07070/0/07070/07/07/070/07/07070/0707070/0/07070/0/07070/07/07070/0/07070/0/07070/07/070/0/07/070

CFDCaseToContinuePathSmallFiles=[PathToCFDCases, ’/SmallFiles/’ ,CFDCaseToContinue, '/’ |;
CFDCaseToContinuePathOutputData=[PathToCFDCases, ’/OutputData/’ ,CFDCaseToContinue, '/’ |;
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